Leucettinibs, a class of DYRK/CLK kinases inhibitors inspired by the marine sponge natural product Leucettamine B

Emmanuel DEAU ${ }^{1}$, Mattias F. LINDBERG ${ }^{1}$, Frédéric MIEGE ${ }^{2}$, Didier ROCHE 2, Nicolas GEORGE 3, Pascal GEORGE ${ }^{1}$, Andreas KRÄMER ${ }^{4}$, Stefan KNAPP ${ }^{4}$ and Laurent MEIJER ${ }^{1 *}$

1. Perha Pharmaceuticals, Perharidy, 29680 Roscoff, France.
2. Edelris, Bâtiment Bioserra 1, 60 avenue Rockefeller, 69008 Lyon, France.
3. Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France.
4. Goethe-University Frankfurt, Buchmann Institute for Molecular Life Sciences (BMLS), Campus Riedberg, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany.

* Corresponding Author Information: Laurent Meijer (meijer@perha-pharma.com)

TABLE OF CONTENT

1 General information S2
2 NMR descriptions and synthetic protocols of $N 2$-functionalized aminoimidazolones S4
3 NMR descriptions and synthetic protocols for heteroarylcarboxaldehydes and their precursors S6
4 NMR descriptions and synthetic protocols for Knoevenagel adducts S16
5 NMR descriptions and synthetic protocols for the regioselective S-alkylation of Knoevenagel adducts S21
6 NMR descriptions and synthetic protocols for Leucettinibs using pathway 2 (late-stage Knoevenagel) S28
7 NMR descriptions and synthetic protocols for Leucettinibs using pathway 1 (late-stage $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$) S35
8 Selected examples of NMR spectra and HPLC's of intermediate and final compound S131
9 Tables S175
Table S1. Assay parameters for the tested protein kinases in the Reaction Biology radiometric assays. S175
Table S2. Evaluation of Leucettinib-92 in the Eurofins DiscovRx KinomeScan kinase kelectivity panel S176
Table S3. Thermal shift selectivity screen of Leucettinib-92 and iso-Leucettinib-92 tested at 0.1 $\mu \mathrm{M}$ with 95 human kinases S185
Table S4. Conservation, within CLKs and DYRKs, of the DYRK1A amino acids involved in the binding of Leucettinib-92 S187
Table S5. Data collection and refinement statistics for CLK1-Leucettinib-92 and CSNK2A1- Leucettinib-92 co-crystal structures. S187
Figure S1. Co-crystal structure of Leucettinib-92 (32) with CSNK2A1 S188

1. General information

Reactions were performed using oven-dried glassware under inert atmosphere of argon. Unless otherwise noted, all reagent-grade chemicals and solvents were obtained from commercial suppliers and were used as received. Reactions were monitored by thin-layer chromatography with silica gel 60 F254 pre-coated aluminum plates (0.25 mm). Visualization was performed under UV light at 254 or 312 nm or, when necessary, with appropriate TLC stains including: phosphomolybdic acid, KMnO_{4}, ninhydrin, CAM, vanillin, p-anisaldehyde.
${ }^{1} \mathrm{H}$ NMR analyses (400 or 500 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra (101 MHz) were recorded with a Bruker ULTRASHIELD 500 or 400 spectrometer. Processing and analyses of the spectra were performed with MestReNova. Data appear in the following order: chemical shifts in ppm which were referenced to the internal solvent signal, multiplicity, number of protons, and coupling constant J in Hertz. Note: all final compounds were analyzed at 300 , 323 and 343 K , with D1 $=1$ or 30 s (relaxation time). The temperature giving the best result (minimization/coalescence of tautomeric forms) was the one retained for the interpretation of ${ }^{1} \mathrm{H}$ NMR's.

Microwave experiments were conducted in an Anton Paar Monowave 400^{\circledR} microwave reactor. The experiments were conducted in a monomode cavity with a power delivery ranging from 0 to 850 W , allowing pressurized reactions (0 to 30 bars) to be performed in sealed glass vials (4 to 30 mL) equipped with snap caps and silicon septa. The temperature (0 to $300{ }^{\circ} \mathrm{C}$) was monitored by a contactless infrared sensor and calibrated with a ruby thermometer. Temperature, pressure, and power profiles were edited and monitored through a touch-screen control panel. Times indicated in the various protocols are the times measured when the mixtures reached the programmed temperature after a ramp period of 3 min .

Sealable round flasks were purchased from Chemglass (https://chemglass.com/) and equipped with screwable PTFE caps and PTFE O-ring, with volumes ranging from 60 mL to 1 L ($60 \mathrm{~mL}, 220$ $\mathrm{mL}, 420 \mathrm{~mL}$ or 1 L) capable of withstanding pressures up to 10 bar (5 bar for the 1 L version).

Both sealable tubes (Biotage) and sealable round flasks (Chemglass) were heated using Drysyn heating systems equipped the appropriate adapters.

Chromatographic purifications of compounds were achieved on an automated Interchim Puriflash XS420 equipped with $30 \mu \mathrm{~m}$ spherical silica-filled prepacked columns as stationary phase.

HPLC/MS and UPLC/MS analyses were carried out by Atlanchim Pharma (3 rue Aronnax, 44800, Saint-Herblain, France, www.atlanchimpharma.com).

- Intermediate compounds were analyzed using an Acquity Waters UPLC/MS equipped a UV detector (Diode Array Detector), a simple quadrupole SQD2 mass detector (ionization: 3.5 kV ESI, desolvation temperature: $400{ }^{\circ} \mathrm{C}$) and a reverse-phase column (NUCLEODUR C18 Gravity-SB $50 / 2,1.8 \mu \mathrm{~m}$). Samples (0.2 to 0.6 mg) were solubilized in a ACN/DMSO (9/1) mixture, and filtered on a $0.2 \mu \mathrm{~m}$ syringe filter prior to injection. Conditions: $\mathrm{A}=\mathrm{H}_{2} \mathrm{O}+0.1 \%$
(v/v) $\mathrm{HCO}_{2} \mathrm{H} ; \mathrm{B}=\mathrm{CH}_{3} \mathrm{CN}+0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{HCO}_{2} \mathrm{H}$, flow rate : $0.65 \mathrm{~mL} / \mathrm{min}$, injection volume: 2 $\mu \mathrm{L}$. elution: $\mathrm{A} / \mathrm{B}: 95 / 5$ to $5 / 95$ in 5 min .
- Final compounds were analyzed using an Ultimate 3000 ThermoScientific HPLC equipped with a WPS-3000RS autosampler, a UV detector (DAD-3000 Diode Array Detector), a TCC-3000RS column oven and a reverse-phase column (Waters XTERRA RP18 150x4.6mm $3.5 \mu \mathrm{~m}$). Samples (0.2 to 0.6 mg) were solubilized in a ACN/DMSO (9/1) mixture, and filtered on a 0.2 $\mu \mathrm{m}$ syringe filter prior to injection. Conditions: $\mathrm{A}=\mathrm{H}_{2} \mathrm{O}+0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{HCO}_{2} \mathrm{H} ; \mathrm{B}=\mathrm{CH}_{3} \mathrm{CN}+$ $0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{HCO}_{2} \mathrm{H}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, injection volume: $2 \mu \mathrm{~L}$. elution: $\mathrm{A} / \mathrm{B}: 95 / 5$ to $5 / 95$ in 20 min . MS determination of the final compounds was carried out by direct infusion with the UPLC/MS system described above.

The nomenclature of the following compounds was generated using Chemdraw. To avoid any confusion, the " (\pm) " symbol added to designate a racemic mixture; "cis" and "trans" prefixes were also used to assign the relative stereochemistry of two adjacent chiral centers.

2. NMR descriptions and synthetic protocols of $\mathbf{N 2}$-functionalized aminoimidazolones

Synthesis of 2-methylsulfanyl-1,4-dihydroimidazol-5-one (1.1)

MeI ($51.4 \mathrm{~mL}, 0.827 \mathrm{~mol}, 4 \mathrm{eq}$) was slowly added dropwise to a stirred suspension of 2-thiohydantoin ($24 \mathrm{~g}, 206.6 \mathrm{mmol}, 1 \mathrm{eq}$), DIPEA ($72 \mathrm{~mL}, 413.2 \mathrm{mmol}, 2 \mathrm{eq}$) and DMAP ($10.096 \mathrm{~g}, 82.64 \mathrm{mmol}, 0.4$ eq) in DCM $(413 \mathrm{~mL})$ maintained at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred 6 h at $0^{\circ} \mathrm{C}$. A precipitate gradually appeared. Upon completion (TLC), the precipitate was filtered on a fritted glass funnel. The resulting solid was adsorbed on silica and purified by FC on silica gel (elution : cyclohexane/AcOEt/DCM 70/30/3 to 0/60/40). The volume of the collected fractions was reduced to approximately an eighth of its initial volume, until yellow crystals started to appear. The mixture was stirred 30 min at $0^{\circ} \mathrm{C}$ and the solid was collected by filtration on a fritted glass funnel to yield 2-methylsulfanyl-1,4-dihydroimidazol-5-one ($15.368 \mathrm{~g}, 118.1 \mathrm{mmol}, 57 \%$) in analytically pure form. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $4.01(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 131.0$.

General Protocol 1 - Addition of aliphatic amines on 2-alkylsulfanyl-1,4-dihydroimidazol-5-ones (GP1)

GP1: the appropriate amine (x eq) was added to a stirred solution of the appropriate 2-alkylsulfanyl-1,4-dihydroimidazol-5-one ${ }^{(\mathrm{a})}(1 \mathrm{eq})$ in the adequate solvent $(\mathrm{C}=0.3 \mathrm{M} /$ isothiourea $)$ in a sealed tube or sealed round flask (heating block). The mixture was thoroughly purged with vacuum/argon cycles and heated at the appropriate temperature for the indicated time (see details below). Upon completion (followed by consumption of the isothiourea on TLC), the mixture was brought back to room temperature.

- GP1-A: direct precipitation of the desired product: The reaction medium was stirred 1 h at $0{ }^{\circ} \mathrm{C}$. The precipitated solid was filtered off on a fritted glass funnel. High purity may be achieved after filtration by washing, reprecipitation, trituration, or recrystallization.
- GP1-B: the product failed to precipitate: the reaction mixture was concentrated in vacuo, adsorbed on silica, and purified by FC. High purity may be achieved after purification by washing, reprecipitation, trituration, or recrystallization.
(a) May require activation with AcOH

Synthesis of 2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4-one (2.1)

Compound (2.1) was synthesized according to GP1-A : reaction carried out in THF, on a 8.91 mmol scale of intermediate (1.1) and 4 eq of cyclohexylamine, at $120^{\circ} \mathrm{C}$ (sealable round flask, heating bock), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Off-white solid, 35% (571 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, 300 K) of major tautomer $\delta_{\mathrm{H}} 7.41$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 6.95 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $3.61(\mathrm{~s}, 2 \mathrm{H}), 3.39-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.51$ $(\mathrm{m}, 1 \mathrm{H}), 1.33-1.03(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 182.0$.

Synthesis of 2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-one (2.2)

Compound (2.2) was synthesized according to GP1-A : reaction carried out in THF, on a 11.52 mmol scale of intermediate (1.1), with 4 eq of cycloheptylamine, at $120{ }^{\circ} \mathrm{C}$ (sealable round flask, heating bock), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Off-white solid, $64 \%(1.429 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, 300 K) of major tautomer $\delta_{\mathrm{H}} 7.42$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 6.88 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $3.86-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.32(\mathrm{~m}, 10 \mathrm{H})$. MS (ESI ${ }^{+}$): $[\mathrm{M}+\mathrm{H}]^{+}$196.0.

Compound (2.3) was synthesized according to GP1-B : reaction carried out in dioxane, on a 3.073 mmol scale of intermediate (1.1), with 3 eq of adamantan-1-amine and 4 eq of AcOH , at $150{ }^{\circ} \mathrm{C}$ (heating block), for 16 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}\left(7 \mathrm{~N} \mathrm{NH}_{3}\right): 99 / 1$ to $9 / 1$). The final product required a trituration in DCM at $0{ }^{\circ} \mathrm{C}$. Beige solid, 35% (254 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 7.18$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 6.73 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 3.52 $(\mathrm{s}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$234.2.

3. NMR descriptions and synthetic protocols for heteroarylcarboxaldehydes and their precursors

General Protocol 2: aromatic substitution of o-fluorinated nitro-anilines (GP2)

GP2: The appropriate amine (3 eq) was added dropwise to a stirred solution of the suitably substituted o-fluoro-nitro-benzene $(1 \mathrm{eq})$ in $\mathrm{EtOH}(\mathrm{C}=1 \mathrm{M})$ maintained at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred 1 h at $0^{\circ} \mathrm{C}$, brought back to room temperature and stirred another 12 h . Upon completion (TLC), the mixture was partially concentrated in vacuo and poured onto water. The precipitated solid was filtered off on a Büchner funnel and thoroughly dried in vacuo. The resulting solid was reprecipitated from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$ to yield the desired product in analytically pure form.

Synthesis of 5-bromo- N-methyl-2-nitroaniline (3.1)

Compound (3.1) was synthesized according to GP2 : reaction carried out on a 68.18 mmol scale of 4-bromo-2-fluoro-1-nitro-benzene, with MeNH_{2} (2 M solution in MeOH or $33 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{EtOH}, 3 \mathrm{eq}$). Bright orange solid, 87% (13.763 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 8.30-8.20(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $7.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 146.3,130.9,130.1,127.9,117.7,116.4,29.8 . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 232.8$.

Compound (3.2) was synthesized according to GP2 : reaction carried out on a 150.5 mmol scale of 3-fluoro-4-nitro-benzonitrile, with MeNH_{2} (2 M solution in MeOH or $33 \% \mathrm{w} / \mathrm{w}$ in EtOH, 3 eq). Bright orange solid, $97 \%(25.917 \mathrm{~g}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 8.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 145.2,132.9,127.4,119.4,118.1,117.7,116.4$, 29.9. MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+} 178.0$.

Synthesis of 4-(methylamino)-3-nitrobenzonitrile (3.3)

Compound (3.3) was synthesized according to GP2 : reaction carried out on a 181 mmol scale of 4-fluoro-3-nitrobenzonitrile, with MeNH_{2} (2 M solution in MeOH or $33 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{EtOH}, 3$ eq). Bright yellow solid, $99 \%(31.799 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 8.71-8.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=9.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 147.5,137.6,131.7,130.7,118.3,115.6$, 96.0, 29.9. MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+} 178.0$.

General Protocol 3 - Reduction of \boldsymbol{o}-amino nitro-anilines (GP3)

GP3-A ($\mathbf{X}=\mathbf{B r}$): $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{eq})$ was carefully added portionwise over 30 min to a stirred solution of the appropriate bromo- N -alkyl-2-nitro-aniline (1 eq) and zinc dust (10 eq) in a $\mathrm{THF} / \mathrm{MeOH}$ mixture $(1 / 1)(\mathrm{C}=0.5 \mathrm{M})$ maintained at $0^{\circ} \mathrm{C}$. When the addition ended, the mixture was stirred another hour at $0{ }^{\circ} \mathrm{C}$ (until the orange color fully disappeared) and gradually brought back to room temperature. The reaction medium was stirred another 6 h at room temperature. Upon completion (TLC), the mixture was filtered off on a pad of celite. The celite was rinsed with MeOH. The filtrate was concentrated in vacuo, adsorbed on silica and purified by FC on silica gel (elution: cyclohexane/AcOEt: $8 / 2$ to $1 / 1$) to yield the desired bromo- N-alkyl-benzene-1,2-diamine in analytically pure form.

GP3-B ($\mathbf{X}=\mathbf{C N}$): $10 \% \mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w})$ was carefully added portionwise to a stirred solution of the appropriate cyano-substituted N-alkyl-nitroaniline (1 eq) and ammonium formiate (10 eq) in $\mathrm{MeOH}(\mathrm{C}=0.3 \mathrm{M})$. The resulting mixture was refluxed 6 h . Upon completion (TLC), the mixture was filtered off on pad of celite. The celite was rinsed with MeOH . The filtrate was concentrated in vacuo, the resulting crude was partitioned between AcOEt and sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$. The aqueous layer was extracted three times with AcOEt. The combined organic layers were washed with water and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The resulting solid was reprecipitated from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$ to yield the desired product in analytically pure form.

Synthesis of 5-bromo-N1-methylbenzene-1,2-diamine (4.1)

Compound (4.1) was synthesized according to GP3-A : reaction carried out on a 17.31 mmol scale of intermediate (3.1). Brown oil, 81% (2.83 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 6.52$ (dd, $J=$ $8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{bs}, 1 \mathrm{H}), 4.61(\mathrm{bs}, 2 \mathrm{H}), 2.68$ $(\mathrm{d}, J=3.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 138.8,134.4,118.4,114.6,110.9$, 108.8, 29.9. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$201.1.

Synthesis of 4-amino-3-(methylamino)benzonitrile (4.2)

Compound (4.2) was synthesized according to GP3-B: reaction carried out on a 146.2 mmol scale of intermediate (3.2). Beige solid, $87 \%(18.764 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 6.85$ (dd, J $=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.52(\mathrm{~m}, 2 \mathrm{H}), 5.48\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $5.01(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $2.72(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 140.4$, 136.4, 122.2, 121.4, 112.2, 110.4, 97.3, 29.9. MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+} 148.1$.

Synthesis of 3-amino-4-(methylamino)benzonitrile (4.3)

Compound (4.3) was synthesized according to GP3-B: reaction carried out on a 179.5 mmol scale of intermediate (3.3). Brown solid, 90% (23.777 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 6.94$ (dd, J $=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{q}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$,
$\mathrm{D}_{2} \mathrm{O}$ exchanged), 4.88 (br s, $2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $2.76(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 141.1,135.1,123.0,121.1,114.5,108.1,96.4,29.5 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 148.0$.

General protocol 4: cyclization of brominated 2-aminophenols and N2-methylbenzene-1,2diamines with triethyl orthoformate (GP4)

GP4-A $(\mathbf{Y}=\mathbf{O H}$ and $\mathbf{X}=\mathbf{B r})$: a solution of the appropriate 2-amino-bromo-phenol (1 eq) and $(\mathrm{EtO})_{3} \mathrm{CH}(2 \mathrm{eq})$ in toluene $(\mathrm{C}=0.5 \mathrm{M})$ was irradiated at $130^{\circ} \mathrm{C}$ for 2 h . Upon completion (TLC), the mixture was cooled down room temperature, directly adsorbed on silica, and purified by FC on silica gel using the appropriate gradient of solvents (elution : cyclohexane/AcOEt : $1 / 0$ to $6 / 4$) to yield the desired bromo-1,3-benzoxazole in analytically pure form.

GP4-B $(\mathbf{Y}=\mathbf{N H R}$ and $\mathbf{X}=\mathbf{B r})$: a solution of the appropriate 4-bromo- N-methyl-benzene-1,2diamine (1 eq), (EtO) $)_{3} \mathrm{CH}(2 \mathrm{eq})$, and APTS. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ in toluene $(\mathrm{C}=0.5 \mathrm{M})$ was irradiated at $130{ }^{\circ} \mathrm{C}$ for 2 h . Upon completion (TLC), the mixture was partitioned between AcOEt and sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$. The aqueous layer was extracted three times with AcOEt. The combined organic layers were washed with brine and water, dried over MgSO_{4}, filtered, and concentrated in vacuo. The resulting brown solid was dissolved in DCM at $0^{\circ} \mathrm{C}$ and precipitated from pentane. The precipitated light beige solid was filtered off on a Büchner funnel, thoroughly rinsed with pentane, and dried in vacuo to yield the desired bromo-1-methyl-benzimidazole in analytically pure form.

GP4-C $(\mathbf{Y}=\mathbf{N H R}$ and $\mathbf{X}=\mathbf{C N})$: a solution of cyano-substituted $N 2$-methylbenzene-1,2-diamine (1 eq) was refluxed in $\mathrm{HCOOH}(\mathrm{C}=0.4 \mathrm{M})$ for 4 h . Upon completion (TLC), the mixture was brought back to room temperature, and concentrated in vacuo. The resulting crude was carefully treated with sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$ to neutral pH . The precipitated solid was filtered on a Büchner funnel. The solid was solubilized in DCM and washed with water, sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$, dried over MgSO_{4}, filtered and concentrated in vacuo to yield the desired solid in analytically pure form. Higher purity may be achieved by reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$.

Synthesis of 6-bromo-1,3-benzoxazole (5.1)

Compound (5.1) was synthesized according to GP4-A : reaction carried out on a 21.27 mmol scale of 2 -amino-5-bromo-phenol. Light beige solid, 89% (3.745 g). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 154.8,150.0,139.1,127.8,121.5,117.7,114.5$. MS (ESI ${ }^{+}$): $[\mathrm{M}+\mathrm{H}]^{+}$199.7.

Synthesis of 6-bromo-1-methyl-benzimidazole (5.2)

Compound (5.2) was synthesized according to GP4-B : reaction carried out on a 10.94 mmol scale of intermediate (4.1). Light beige solid, $79 \%(1.815 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, $300 \mathrm{~K}) \delta_{\mathrm{H}} 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 145.6,142.4,135.8,124.3,121.0,114.7,113.3,30.8$. MS (ESI ${ }^{+}$): $[\mathrm{M}+\mathrm{H}]^{+} 212.8$.

Synthesis of 1-methyl-1H-benzo[d]imidazole-6-carbonitrile (5.3)

Compound (5.3) was synthesized according to GP4-C : reaction carried out on a 127.5 mmol scale of intermediate (4.2). Beige solid, 94% (18.829 g). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 8.46$ (s, $1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 148.1,146.2,134.3,124.8,120.4,119.9,115.9,104.0,31.1 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$: $[\mathrm{M}+\mathrm{H}]^{+}$158.1.

Synthesis of 1-methyl-1H-benzo[d]imidazole-5-carbonitrile (5.4)

Compound (5.4) was synthesized according to GP4-C : reaction carried out on a 156.3 mmol scale of intermediate (4.3). Beige solid, 73% (17.895 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 8.43$ (s, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 147.4,142.8,137.5,125.6,124.4,119.9,111.9,103.7,31.0$. MS (ESI $\left.{ }^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$158.0.

General Protocol N ${ }{ }^{5}$: palladium-catalyzed vinylation of heteroarylbromides (GP5)

GP5-A: a mixture of the appropriate heteroarylbromide (1 eq), potassium vinyltrifluoroborate (1.2 eq), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(95 / 5)(\mathrm{C}=0.4 \mathrm{M})$ was thoroughly purged with vacuum/argon cycles. The mixture was brought to reflux and heated for 12 h . Upon completion (${ }^{1} \mathrm{H}$ NMR), the mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and AcOEt. The aqueous layer was extracted three times with AcOEt. The combined organic layers were dried over MgSO_{4}, filtered, concentrated in vacuo, adsorbed on silica, and purified by FC on silica gel using the appropriate gradient of solvents (see details below for each compound) to yield the desired vinylheteroaryl in analytically pure form.

GP5-B : In a sealed tube thoroughly purged with vacuum/argon cycles, a mixture of the appropriate heteroarylbromide (1 eq), potassium vinyltrifluoroborate (2 eq), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3 \mathrm{eq})$, and PEPPSI-iPr (15 $\mathrm{mol} \%)$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(95 / 5)(\mathrm{C}=0.4 \mathrm{M})$ was irradiated for 4 h at the adequate temperature (see details below for each compound). Upon completion (${ }^{1} \mathrm{H} N \mathrm{NM}$), the mixture was cooled down room temperature, directly adsorbed on silica, and purified by FC on silica gel using the appropriate gradient of solvents (see details below for each compound) to yield the desired vinylheteroaryl in analytically pure form.

Synthesis of 6-vinylbenzo[d][1,2,3]thiadiazole (6.1)

Compound (6.1) was synthesized according to GP5-B : reaction carried out on a 15.38 mmol scale of with 6-bromo-1,2,3-benzothiadiazole. Purification by FC: elution: cyclohexane/AcOEt: 98/2 to 8/2. Brown oil, 59\% (1.466 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 8.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.45$ (s, $1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 157.4,141.4,138.3,135.5,125.5,123.3$, 118.5, 117.8. MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$163.1.

Synthesis of 2-methyl-6-vinylbenzo[d]thiazole (6.2)

Compound (6.2) was synthesized according to GP5-A : reaction carried out on a 8.77 mmol scale of 6-bromo-2-methylbenzo[d]thiazole. Purification by FC : elution : cyclohexane/AcOEt: 95/5 to 7/3. Brown oil, $70 \%(1.073 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 167.3,152.7,136.2$, 135.8, 134.0, 124.2, 121.9, 119.6, 114.7, 19.8. MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+} 176.0$.

Synthesis of 5-vinylbenzo[d]thiazole (6.3)

Compound (6.3) was synthesized according to GP5-A : reaction carried out on a 14.01 mmol scale of 6-bromobenzo[d]thiazole. Purification by FC: elution : cyclohexane/AcOEt : 99/1 to 7/3. Pale yellow oil, $79 \%(1.794 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=17.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}}{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 156.8$, 153.6, 136.3, 135.7, 133.0, 123.4, 122.5, 120.7, 115.0. MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+} 161.9$.

Synthesis of 6-vinylbenzo[d]oxazole (6.4)

Compound (6.4) was synthesized according to GP5-A : reaction carried out on a 40.70 mmol scale of intermediate (5.1). Purification by FC: elution : cyclohexane/AcOEt: 99/1 to 8/2. Brown oil, 74% (4.345 g) . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=17.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 154.7,149.9,139.5,136.2,135.3,123.2$, 119.9, 115.0, 108.4. MS (ESI ${ }^{+}$): $[\mathrm{M}+\mathrm{H}]^{+}$145.9. (N.B. : (6.4) has nearly identical Rf as starting material (5.1) in cyclohexane/AcOEt : 8/2).

Synthesis of 1-methyl-6-vinyl-1 H-benzo[d]imidazole (6.5)

Compound (6.5) was synthesized according to GP5-B : reaction carried out on a 4.26 mmol scale of intermediate (5.2). Purification by FC : elution : DCM/MeOH : 99/1 to 94/6. Brown oil, 82% (551 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 2 \mathrm{H})$, $6.86(\mathrm{dd}, J=17.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 144.2,143.8,137.3,135.0,133.2,120.8,120.2,113.2,107.3,31.1 . \mathrm{MS}$ (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}$159.1.

General Protocol ${ }^{\circ} \mathbf{6}$: Synthesis of heteroarylcarbaldehydes from vinylheteroaryls - Osmiumcatalyzed Lemieux-Johnson oxidation (GP6)

GP6: $\mathrm{NaIO}_{4}(4 \mathrm{eq})$ was added portionwise to a stirred solution of the appropriate vinylheteroaryl (1 eq), 2,6-lutidine (2 eq), $\mathrm{OsO}_{4}\left(4 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}\right.$ sol., $5 \mathrm{~mol} \%$), in dioxane $/ \mathrm{H}_{2} \mathrm{O}(1 / 1)(\mathrm{C}=0.2 \mathrm{M})$ maintained at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was vigorously stirred at $0^{\circ} \mathrm{C}$ for 1 h , brought back to room temperature and stirred another 4 h . Upon completion (TLC), the mixture was partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with AcOEt (x 3). The combined organic layers were washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$, sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$, dried over MgSO_{4}, filtered, and concentrated in vacuo (trace amounts of 2,6-lutidine were removed by co-evaporation with toluene). The solid residue was adsorbed on silica and purified by FC on silica gel using the appropriate gradient of solvents (see details below for each compound).

Synthesis of benzo $[d][1,2,3]$ thiadiazole-6-carbaldehyde (7.1)

Compound (7.1) was synthesized according to GP6 : reaction carried out on a 9.04 mmol scale of intermediate (6.1). Purification by FC : elution : cyclohexane/AcOEt : 95/5 to $8 / 2$. Colorless solid, $41 \%(609 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 10.26(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 192.9,159.4,141.1$, 135.5, 126.5, 124.2, 124.2. MS (ESI ${ }^{+}$): $[\mathrm{M}+\mathrm{H}]^{+}$165.0.

Synthesis of 2-methylbenzo[d]thiazole-6-carbaldehyde (7.2)

Compound (7.2) was synthesized according to GP6 : reaction carried out on a 3.99 mmol scale of intermediate (6.2). Purification by FC : elution: cyclohexane/AcOEt: 9/1 to $7 / 3$. Light beige solid. $84 \%(594 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}, $300 \mathrm{~K}) \delta_{\mathrm{C}} 192.2,172.4,156.7,135.9,132.7,126.4,125.2,122.4,20.2 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 177.9$.

Synthesis of benzo[d]thiazole-5-carbaldehyde (7.3)

Compound (7.3) was synthesized according to GP6 : reaction carried out on a 8.68 mmol scale of intermediate (6.3). Purification by FC : elution : cyclohexane/AcOEt : 9/1 to 7/3. Colorless solid, 63% $(887 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 10.17(\mathrm{~s}, 1 \mathrm{H}), 9.56(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 192.8,158.6,153.1,140.0,134.8,125.7,124.1,123.5 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 164.8$.

Synthesis of benzo[d]oxazole-6-carbaldehyde (7.4)

Compound (7.4) was synthesized according to GP6 : reaction carried out on a 20.66 mmol scale of intermediate (6.4). Purification by FC : elution : cyclohexane/AcOEt: 99/1 to 7/3. Light beige solid, $87 \%(2.654 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 10.12(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H})$, $8.16-7.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 192.1,157.5,149.5,144.6,134.0$, 126.0, 120.7, 112.6. MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+} 147.9$.

Synthesis of 1-methyl-1H-benzo[d]imidazole-6-carbaldehyde (7.5)

Compound (7.5) was synthesized according to GP6 : reaction carried out on a 3.48 mmol scale of intermediate (6.5). Purification by FC : elution : DCM/MeOH : 99/1 to 94/6. Colorless solid, 54% (300 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.39-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.95$

$$
\begin{aligned}
& (\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} \\
& 192.1,148.5,147.0,134.9,132.1,124.7,120.9,111.4,31.5 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 161.1 .
\end{aligned}
$$

General protocol 7 - Alternative synthesis of heteroarylcarbaldehydes from heteroarylcarbonitriles - Adam's catalyst-mediated oxidation (GP7)

GP7: Adam's catalyst ($23 \mathrm{~mol} \%$) was carefully added portionwise to a stirred solution of the appropriate carbonitrile $(1 \mathrm{eq})$ in a $\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O}$ solution $(9 / 1)(\mathrm{C}=0.3 \mathrm{M})$. The resulting mixture was refluxed for 48 h . Upon completion (TLC), the mixture was brought back to room temperature and filtered off on pad of celite. The celite was rinsed with HCOOH . The filtrate was concentrated in vacuo and partitioned between DCM and sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$. The aqueous layer was extracted three times with DCM. The combined organic layers were washed with sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$, water, dried over MgSO_{4}, filtered, concentrated in vacuo, adsorbed on silica, and purified by FC on silica gel (see details below).

Note: further developments indicated that the reaction proceeds better with sequential additions of PtO_{2} : one portion added at $\mathrm{t}_{0}(15 \mathrm{~mol} \%)$, then another at $\mathrm{t}_{0}+24 \mathrm{~h}(8 \mathrm{~mol} \%)$ for a total amount of 23 mol\% of Adam's catalyst over 48h.

Synthesis of 1-methyl-1H-benzo[d]imidazole-6-carbaldehyde (7.5)

Compound (7.5) was synthesized according to GP7 : reaction carried out on a 30.32 mmol scale of intermediate (5.3). Purification by FC: elution: DCM/MeOH : 99/1 to 94/6. Colorless solid, 61\% $(2.986 \mathrm{~g})$. The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Spectroscopic and analytical data were identical to those described above. Note: the initial purity of the nitrile precursor strongly influences the outcome of the reaction and ease of purification.

Synthesis of 1-methyl-1H-benzo[d]imidazole-5-carbaldehyde (7.6)

Compound (7.6) was synthesized according to GP7 : reaction carried out on a 25.44 mmol scale of (5.4). Purification by FC: elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $94 / 6$. The final product required a
reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Colorless solid, 51% (2.079 g). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 10.10(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 192.1,145.7,143.2,138.8,132.0$, 124.6, 123.6, 110.3, 31.6. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$161.1. Note: the initial purity of the nitrile precursor strongly influences the outcome of the reaction and ease of purification.

4. NMR descriptions and synthetic protocols for Knoevenagel adducts

General protocol 8 - Knoevenagel condensation between thiohydantoin and heteroarylcarbalhydes (GP8)

GP8: a stirred solution of thiohydantoin (1 eq), the appropriate heteroarylcarbaldehyde (1 eq), organic base $(1 \mathrm{eq})$ and $\mathrm{AcOH}(1 \mathrm{eq})$ in $\mathrm{EtOH}(\mathrm{C}=0.3 \mathrm{M})$ was heated in a sealed tube in a microwave oven (Anton Paar), or in a sealable round flask, for the indicated time at the adequate temperature (see details below for each compound). Upon completion (followed by consumption of the heteroarylcarbaldehyde on TLC), the reaction medium was cooled down and added onto stirred water. The precipitated solid was stirred for 30 min and filtered off on a fritted glass funnel, thoroughly dried, and could be used in the next step without further purification. Higher purity may be achieved by means of trituration.

Synthesis of (Z)-5-(benzo[$d][1,3]$ dioxol-5-ylmethylene)-2-thioxoimidazolidin-4-one (8.1)

Compound (8.1) was synthesized according to GP8 : reaction carried out on a 33.61 mmol scale of 2thiohydantoin, piperonal, AcOH and piperidine as the organic base, in a sealable round flask. Reaction temperature: $115{ }^{\circ} \mathrm{C}$, time: 24 h . The final product required a trituration in EtOH. Yellow solid, 95% (7.893 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 12.31$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 12.08 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $7.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 178.7,165.8,148.4$, 147.9, 126.5, 126.3, 126.1, 112.2, 109.3, 108.7, 101.7. MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+} 249.1$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-thioxoimidazolidin-4-one (8.2)

Compound (8.2) was synthesized according to GP8 : reaction carried out on a 67.21 mmol scale of 2thiohydantoin, benzo[d]thiazole-6-carbaldehyde, AcOH and piperidine as the organic base, in a sealable round flask. Reaction temperature: $125^{\circ} \mathrm{C}$, time: 24 h . The final product required a trituration in EtOH. Yellow solid, 88\% (30.964 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}} 12.44$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 12.25 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.47 ($\mathrm{s}, 1 \mathrm{H}$), 8.61 ($\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.09(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{C}} 179.3$, $165.7,158.0,153.1,134.4,129.8,128.9,128.1,123.7,123.1,110.9 . \mathrm{MS}^{(}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 262.1$.

Synthesis of (Z)-5-((2-methylbenzo[d]thiazol-6-yl)methylene)-2-thioxoimidazolidin-4-one (8.3)

Compound (8.3) was synthesized according to GP8: reaction was carried out on a 7.34 mmol scale of 2-thiohydantoin, 2-methylbenzo[d]thiazole-6-carbaldehyde (7.2), AcOH and piperidine as the organic base, in a sealed tube ($\mu \mathrm{w}$ Anton Paar). Reaction temperature: $110^{\circ} \mathrm{C}$, time: 90 min . The final product required a trituration in EtOH . Yellow solid, $94 \%(1.898 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}} 12.42$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 12.21 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.48 (s, 1H), 7.91 (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta_{\mathrm{C}}$ $\left.179.2,169.1,165.7,153.1,136.0,129.0,128.8,127.7,123.0,122.0,111.1,20.0 . \mathrm{MS}^{(E S I}\right)^{+}:\left[\mathrm{M}+\mathrm{H}^{+}\right.$ 275.9.

Synthesis of (Z)-5-(benzo[d]thiazol-5-ylmethylene)-2-thioxoimidazolidin-4-one (8.4)

Compound (8.4) was synthesized according to GP8: reaction was carried out on a 49.11 mmol scale of 2-thiohydantoin, benzo[d]thiazole-5-carbaldehyde (7.3), AcOH and piperidine as the organic base, in a sealable round flask. Reaction temperature: $125^{\circ} \mathrm{C}$, time: 24 h . The final product required a trituration in EtOH. Yellow solid, $72 \%(9.283 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 12.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 12.36 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.46(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 179.4$, $\left.165.8,157.3,153.5,134.5,130.6,128.0,127.3,124.4,122.8,111.3 . \mathrm{MS}^{(E S I}\right)^{+}:[\mathrm{M}+\mathrm{H}]^{+} 262.1$.

Synthesis of (Z)-5-(benzo[d]oxazol-6-ylmethylene)-2-thioxoimidazolidin-4-one (8.5)

Compound (8.5) was synthesized according to GP8 : reaction carried out on a 2.72 mmol scale of 2thiohydantoin, benzo $[d]$ oxazole-6-carbaldehyde $(7.4), \mathrm{AcOH}$, and ethanolamine as the organic base, in a sealed tube ($\mu \mathrm{w}$ Anton Paar). Reaction temperature: $80^{\circ} \mathrm{C}$, time: 15 min ($\mu \mathrm{w}$ Anton Paar). The final product required a trituration in EtOH. Yellow solid, 72% (483 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, $300 \mathrm{~K}) \delta_{\mathrm{H}} 12.33\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.84(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 179.4,165.8,155.7$, 149.8, 140.3, 130.2, 128.0, 127.7, 120.2, 112.2, 111.1. MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+} 245.8$.

Synthesis of (\boldsymbol{Z})-5-((2,3-dihydrobenzofuran-5-yl)methylene)-2-thioxoimidazolidin-4-one (8.6)

Compound (8.6) was synthesized according to GP8 : reaction carried out on a 13.49 mmol scale of 2thiohydantoin, 2,3-dihydrobenzofuran-5-carbaldehyde, AcOH , and piperidine as the organic base, in a sealable round flask. Reaction temperature: $125^{\circ} \mathrm{C}$, time: 24 h . The final product required a trituration in EtOH. Yellow solid, $81 \%(2.683 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 12.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $12.02\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 178.3,165.8,161.1,131.9,128.5,126.8,125.4,124.9,112.9,109.4,71.8,28.6$. MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}$246.9.

Synthesis of (Z)-5-((1H-benzo[d]imidazol-5-yl)methylene)-2-thioxoimidazolidin-4-one (8.7)

Compound (8.7) was synthesized according to GP8 : reaction carried out on a 4.20 mmol scale of 2thiohydantoin, $1 H$-benzimidazole-5-carbaldehyde, AcOH and piperidine as the organic base, in a sealed tube ($\mu \mathrm{w}$ Anton Paar). Reaction temperature: $110^{\circ} \mathrm{C}$, time: 60 min . The final product required a trituration in EtOH. Yellow solid, 95% (958 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major
tautomer $\delta_{\mathrm{H}} 12.42\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $12.03\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.25(\mathrm{~s}, 1 \mathrm{H})$, $8.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.69-7.51(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 245.8$.

Synthesis of (Z)-5-((1-methyl-1H-benzo[d]imidazol-6-yl)methylene)-2-thioxoimidazolidin-4-one

 (8.8)

Compound (8.8) was synthesized according to GP8 : reaction carried out on a 4.37 mmol scale of 2thiohydantoin, 1-methyl-1H-benzo[d]imidazole-6-carbaldehyde (7.5), AcOH and piperidine as the organic base, in a sealed tube ($\mu \mathrm{w}$ Anton Paar). Reaction temperature : $110{ }^{\circ} \mathrm{C}$, time : 60 min . The final product required a trituration in EtOH . Yellow solid, $76 \%(858 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 12.38$ (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 12.24 (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.29 $(\mathrm{s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 178.8,165.8,146.6,144.3,135.1,126.5,126.4,125.4,119.6$, 113.2, 111.6, 31.2. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 259.1$.

Synthesis of (Z$)$-5-((1H-indazol-5-yl)methylene)-2-thioxoimidazolidin-4-one (8.9)

Compound (8.9) was synthesized according to GP8: reaction carried out on a 4.42 mmol scale of 2thiohydantoin, indazole-5-carbaldehyde, AcOH , and piperidine as the organic base, in a sealed tube ($\mu \mathrm{w}$ Anton Paar). Reaction temperature: $110^{\circ} \mathrm{C}$, time: 60 min . The final product required a trituration in EtOH. Yellow solid, 89% (742 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 13.24(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 12.33 (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 12.19 (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.27 (s, $1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 179.2,166.3,140.1,135.0,129.0,126.8,125.2,123.8,113.6,111.0 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$244.9.

Synthesis of (Z)-5-((1-methyl-1H-indazol-5-yl)methylene)-2-thioxoimidazolidin-4-one (8.10)

Compound (8.10) was synthesized according to GP8 : reaction carried out on a 1.72 mmol scale of 2thiohydantoin, 1-methylindazole-5-carbaldehyde, AcOH , and piperidine as the organic base, in a sealed tube ($\mu \mathrm{w}$ Anton Paar). Reaction temperature: $110^{\circ} \mathrm{C}$, time: 60 min . The final product required a trituration in EtOH. Yellow solid, 92% (408 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 12.33$ (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $12.20\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{dd}, J=8.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 178.8,165.8,139.4,133.5,128.4,126.4,124.8,123.9,123.6,112.9,110.1$, 35.5. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$258.9.

Synthesis of (5Z)-5-[(2-methylindazol-5-yl)methylene]-2-thioxo-imidazolidin-4-one (8.11)

Compound (8.11) was synthesized according to GP8 : reaction carried out on a 10.69 mmol scale of 2thiohydantoin, 2-methylindazole-5-carbaldehyde, AcOH and piperidine as the organic base, in a sealable round flask. Reaction temperature : $110{ }^{\circ} \mathrm{C}$, time : 60 min . The final product required a trituration in EtOH. Yellow solid, $89 \%(485 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 12.31$ (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $12.16\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.44(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.54$ $(\mathrm{m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 178.6,165.8,147.7$, $\left.127.5,126.3,126.1,125.2,123.9,121.9,117.0,113.3,39.9 . \mathrm{MS}^{(\mathrm{ESI}}{ }^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 259.1$.

Synthesis of (Z)-5-((1H-indol-5-yl)methylene)-2-thioxoimidazolidin-4-one (8.12)

Compound (8.12) was synthesized according to GP8 : reaction carried out on a 8.66 mmol scale of 2thiohydantoin, 1 H -indole-5-carbaldehyde, AcOH and piperidine as the organic base, in a sealable round flask. The final product required a trituration in EtOH. Yellow solid, $74 \%(1.56 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 12.14$ (br s, $2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 11.32 (s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.08(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.52-6.47(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 178.2,165.9,136.5,128.1,126.8,125.2,124.2,123.3$, 123.2, 115.0, 111.9, 102.0. MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+} 243.8$.

Compound (8.13) was synthesized according to GP8 : reaction carried out on a 8.66 mmol scale of 2thiohydantoin, 1-methyl- 1 H -indole-5-carbaldehyde, AcOH and piperidine as the organic base, in a sealable round flask. The final product required a trituration in EtOH. Yellow solid, $98 \%(1.59 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 12.26$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 12.11 (br s, $1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}}$ $\left.178.3,165.9,136.9,131.1,128.4,125.2,124.1,123.5,123.3,114.7,110.2,101.4,32.6 . \mathrm{MS}^{(} \mathrm{ESI}^{+}\right)$: $[\mathrm{M}+\mathrm{H}]^{+} 258.9$.

5. NMR descriptions and synthetic protocols for the regioselective S-alkylation of Knoevenagel adducts

General protocol 9 - S-Alkylation of (5Z)-5-heteroarylmethylene-2-thioxo-imidazolidin-4-ones (ROUTE 2)

GP9 : The appropriate alkyliodide (1.05 eq) was added dropwise to a stirred solution of the adequate 5-heteroaryl-2-thioxo-imidazolidin-4-one (1 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{eq})$ in DMF $(\mathrm{C}=0.3 \mathrm{M})$ at the appropriate temperature (see details below). The resulting mixture was stirred at the appropriate temperature, for the indicated time. Upon completion (TLC), the mixture was poured into water. The precipitated solid was stirred for 30 min and filtered off on a fritted glass funnel, thoroughly dried, and could be used in the next step without further purification. Trace impurities resulting from doublealkylation may be removed by trituration or FC.

Synthesis of (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-2-(ethylthio)-3,5-dihydro-4H-imidazol-4one (9.1)

Compound (9.1) was synthesized according to GP9: reaction was carried out on a 4.03 mmol scale of intermediate (8.1) and EtI, at room temperature, for 12 h . Yellow solid, $86 \%(953 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}} 11.71$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.5,163.1,148.6,147.6,137.7,128.8,127.5,121.0,110.0$, 108.6, 101.5, 24.2, 14.5. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 277.9$.

Synthesis of (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4-one (9.2)

Compound (9.2) was synthesized according to GP9: reaction was carried out on a 31.67 mmol scale of intermediate (8.1) and PeI, at $0^{\circ} \mathrm{C}$ for 6 h , then r.t. for 12 h . After filtration and drying, the final product required a trituration in min. DCM. Yellow solid, $96 \%(7.995 \mathrm{~g}) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 11.75$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}} 170.6$, 163.76, 148.6, 147.6, 137.8, 128.7, 127.6, 121.0, 110.1, 108.5, 101.5, 12.2. MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+} 263.1$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(ethylthio)-3,5-dihydro-4H-

 imidazol-4-one (9.3)

Compound (9.3) was synthesized according to GP9: reaction was carried out on a 7.69 mmol scale of intermediate (8.2) and EtI, at room temperature, for 12 h . Yellow solid, $89 \%(978 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 11.85\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.46(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.17(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.5,165.0,157.8,153.2,139.5,134.1,132.0,129.2,125.4$, 123.0, 119.9, 24.4, 14.5. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$289.9.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4one (9.4)

Compound (9.4) was synthesized according to GP9: reaction was carried out on a 246.24 mmol scale of intermediate (8.2) and MeI, at $0^{\circ} \mathrm{C}$ for 6 h , then r.t. for 12 h . After filtration and drying, the final product required a trituration in min. DCM. Yellow solid, 95% (64.598 g). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 11.89\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.46(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.45$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}, 300 \mathrm{~K}\right) \delta 171.1,166.1,158.3,153.7,140.0,134.6,132.4,129.8,125.9,123.5,120.4,12.8 . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$275.9.

Synthesis of (Z)-2-(ethylthio)-5-((2-methylbenzo[d]thiazol-6-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (9.5)

Compound (9.5) was synthesized according to GP9: reaction was carried out on a 1.45 mmol scale of (8.3) and EtI, at room temperature, for 12 h . Yellow solid, $84 \%(368 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 11.82\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.75(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.5,169.0,164.6,153.3,139.2,135.7,131.2,129.1,124.8,122.0,120.1$, 24.3, 19.9, 14.5. MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+} 303.9$.

Synthesis of (Z)-5-((2-methylbenzo[d]thiazol-6-yl)methylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4-one (9.6)

Compound (9.6) was synthesized according to GP9: reaction was carried out on a 3.63 mmol scale of (8.3) and MeI, at $0^{\circ} \mathrm{C}$ for 6 h , then r.t. for 12 h . After filtration and drying, the final product required a trituration in min. DCM. Yellow solid, $92 \%(962 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) δ_{H} 11.86 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.77(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.6,169.0,165.3$, 153.3, 139.2, 135.7, 131.2, 129.3, 124.9, 121.9, 120.2, 19.9, 12.3. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 290.1$.

Synthesis of (Z)-5-(benzo[d]thiazol-5-ylmethylene)-2-(ethylthio)-3,5-dihydro-4H-imidazol-4-one (9.7)

Compound (9.7) was synthesized according to GP2: reaction was carried out on a 1.91 mmol scale of (8.4) and EtI, at room temperature, for 12 h . Yellow solid, $93 \%(516 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 11.84\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.43(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.5,164.8,157.1,153.5,139.5,134.7,132.7,128.2,125.7,122.5$, 120.3, 24.3, 14.6. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 290.9$.

Synthesis of (Z)-5-(benzo[d]thiazol-5-ylmethylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4one (9.8)

Compound (9.8) was synthesized according to GP2: reaction was carried out on a 3.41 mmol scale of (8.4) and MeI, at $0^{\circ} \mathrm{C}$ for 6 h , then r.t. for 12 h . After filtration and drying, the final product required a trituration in min. DCM. Yellow solid, $85 \%(800 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) δ_{H} 11.88 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.43(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 170.7,165.5,157.1$, $153.4,139.5,134.7,132.7,128.3,125.8,122.5,120.4,12.3 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 276.1$.

Synthesis of (Z)-5-(benzo[d]oxazol-6-ylmethylene)-2-(ethylthio)-3,5-dihydro-4H-imidazol-4-one (9.9)

Compound (9.9) was synthesized according to GP2: reaction was carried out on a 1.97 mmol scale of (8.5) and EtI, at room temperature, for 12 h . Yellow solid, $76 \%(411 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}} 11.85\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.82(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 170.4,165.0,155.7,149.6,140.6,139.4,132.3,128.6,120.1,120.0$, 113.1, 24.4, 14.5. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 273.9$.

dihydro-4H-imidazol-4-one (9.10)

Compound (9.10) was synthesized according to GP2: reaction was carried out on a $877 \mu \mathrm{~mol}$ scale of (8.6) and EtI, at room temperature, for 12 h . The final product required a trituration in warm EtOH . Yellow solid, $73 \%(176 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 11.65$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.11(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.17(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}}$ $\left.170.6,162.1,161.2,137.0,132.7,128.4,128.1,127.2,121.7,109.3,71.6,28.7,24.2,14.6 . \mathrm{MS}^{(} \mathrm{ESI}^{+}\right)$: $[\mathrm{M}+\mathrm{H}]^{+}$275.9.

Synthesis of (Z)-5-((2,3-dihydrobenzofuran-5-yl)methylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4-one (9.11)

Compound (9.11) was synthesized according to GP2: reaction was carried out on a 10.23 mmol scale of (8.6) and MeI, at $0^{\circ} \mathrm{C}$ for 6 h , then at r.t for 12 h . The final product required a trituration in DCM. Yellow solid, $96 \%(2.57 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 11.68$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.13(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 170.7$, $\left.162.8,161.2,137.0,132.8,128.4,128.1,127.1,121.7,109.3,71.6,28.6,12.2 . \mathrm{MS}^{(\mathrm{ESI}}\right)^{+}:[\mathrm{M}+\mathrm{H}]^{+}$ 261.1.

Synthesis of (Z)-5-((1H-benzo[d]imidazol-5-yl)methylene)-2-(ethylthio)-3,5-dihydro-4H-imidazol-4-one (9.12)

Compound (9.12) was synthesized according to GP2 : reaction carried out on a 1.64 mmol scale of (8.7) and EtI, at r.t. for 12 h . Yellow solid, $61 \%(274 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}}$ $12.85-12.51$ (br m, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 11.71 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.52(\mathrm{~s}, 1 \mathrm{H})$,
$8.29(\mathrm{~s}, 1 \mathrm{H}), 8.17-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.48(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 272.9$.

Synthesis of (Z)-5-((1H-benzo[d]imidazol-5-yl)methylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4-one (9.13)

Compound (9.13) was synthesized according to GP9 : reaction carried out with intermediate (8.7) $(16.04 \mathrm{mmol})$ and MeI, at $0^{\circ} \mathrm{C}$ for 6 h , then at r.t for 12 h . The final product required a trituration in DCM. Yellow solid, 92% (3.827 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 12.64$ (br s, $1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 11.75 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.53(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.72-7.53(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 259.1$.

Synthesis of (Z)-5-((1H-indazol-5-yl)methylene)-2-(ethylthio)-3,5-dihydro-4H-imidazol-4-one

 (9.14)

Compound (9.14) was synthesized according to GP9 : reaction carried out on a 2.05 mmol scale of (8.9) and EtI, at r.t. for 12 h . Yellow solid, $86 \%(481 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) δ_{H} $13.24\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $11.71\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.52(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.6,162.8,139.9,137.8,134.8,129.0,127.1$, 125.2, 123.3, 122.2, 110.4, 24.2, 14.6. MS (ESI $\left.{ }^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 272.9$.

Synthesis of (Z)-2-(ethylthio)-5-((1-methyl-1H-indazol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (9.15)

Compound (9.15) was synthesized according to GP9 : reaction carried out on a 1.58 mmol scale of (8.10) and EtI, at r.t. for 12 h . Yellow solid, $76 \%(344 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}}$ 11.73 (bs, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.50(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(101 MHz, DMSO- $\left.d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.6,163.0,139.5,137.9,133.7,128.9,127.1,125.3,123.8,122.0$, 110.0, 35.5, 24.3, 14.6. MS (ESI ${ }^{+}$): $[\mathrm{M}+\mathrm{H}]^{+} 287.9$.

Synthesis of (Z)-5-((1-methyl-1H-indazol-5-yl)methylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4-one (9.16)

Compound (9.16) was synthesized according to GP9 : reaction carried out on a 12.00 mmol scale of (8.10) and MeI, at $0^{\circ} \mathrm{C}$ for 6 h , then at r.t for 12 h . The final product required a trituration in DCM. Yellow solid, 94\% (3.060 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 11.75$ (bs, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.53(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$, $4.06(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 170.7,163.7,139.5,137.9$, 133.7, 129.1, 127.1, 125.3, 123.8, 122.0, 109.9, 35.4, 12.2. MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+} 273.2$.

Synthesis of (Z)-2-(ethylthio)-5-((2-methyl-2H-indazol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (9.17)

Compound (9.17) was synthesized according to GP9: reaction carried out on a 1.87 mmol scale of (8.11) and EtI, at r.t. for 12 h . Yellow solid, $88 \%(471 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{H}}$ 11.70 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.46(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.6,162.6,148.0,137.7,127.8,127.7,126.4,126.0,122.4,121.9,116.9$, 39.9, 24.2, 14.6. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 287.9$.

Synthesis of (Z)-5-((1H-indol-5-yl)methylene)-2-(ethylthio)-3,5-dihydro-4H-imidazol-4-one (9.18)

Compound (9.18) was synthesized according to GP9: reaction carried out on a 2.47 mmol scale of (8.12) and EtI, at r.t. for 12 h . The final product required purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}$: $99 / 1$ to $93 / 7$). Yellow solid, 57% (380 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 11.61$ (br s, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $11.32\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.34(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.53-6.46(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{C}} 170.8,161.4,136.8,136.7,127.9,126.5$, 125.6, 125.2, 124.8, 124.0, 111.8, 102.2, 24.2, 14.7. MS (ESI $)^{+}:[\mathrm{M}+\mathrm{H}]^{+} 272.9$.

Synthesis of (Z)-2-(ethylthio)-5-((1-methyl-1 \boldsymbol{H}-indol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4one (9.19)

Compound (9.19) was synthesized according to GP9: reaction carried out on a 3.89 mmol scale of (8.13) and EtI, at r.t. for 12 h . The final product required purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}$: $99 / 1$ to $93 / 7$). Yellow solid, 73% (805 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 11.62$ (br s, 1 H , NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.33(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H})$, $6.86(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 170.7,161.6,137.0,136.9,130.8,128.2,125.6,125.3,124.8,123.7,110.1$, 101.6, 32.6, 24.2, 14.7. MS (ESI $\left.{ }^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 286.9$.

Synthesis of (Z)-5-((1-methyl-1H-benzo[d]imidazol-6-yl)methylene)-2-(methylthio)-3,5-dihydro-4H-imidazol-4-one (9.20)

Compound (9.20) was synthesized according to GP9: reaction carried out on a 12.99 mmol scale of (8.8) and MeI, at $0^{\circ} \mathrm{C}$ for 6 h , then at r.t for 12 h . The final product required a trituration in DCM. Yellow solid, $96 \%(3.395 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 11.79$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.52(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 273.1$.

6. NMR descriptions and synthetic protocols for Leucettinibs using pathway 2 (late-stage Knoevenagel)

General protocol 10 - Knoevenagel condensation between $N 2$-functionalized 2-amino-1,4-dihydroimidazol-5-ones and heteroarylcarbalhydes (GP10)

GP10-A: a stirred solution of the appropriate $N 2$-functionalized 2-amino-1,4-dihydroimidazol-5-one (1 eq), heteroarylcarboxaldehyde (1.2 eq) and $\mathrm{NH}_{4} \mathrm{HCOO}(1.2 \mathrm{eq})$ in $\mathrm{EtOH}(\mathrm{C}=0.3 \mathrm{M})$ was heated in a sealed tube in a microwave oven (Anton Paar) at $120{ }^{\circ} \mathrm{C}$ for 3 h . Upon completion (followed by consumption of the heteroarylcarboxaldehyde on TLC), the mixture was brought back to room temperature, adsorbed on silica and purified by FC (see details below). After FC, higher purity may be achieved by reprecipitation, trituration, or recrystallization (see details below).

GP10-B: a stirred solution of the appropriate $N 2$-functionalized 2-amino-1,4-dihydroimidazol-5-one $(1 \mathrm{eq})$, heteroarylcarboxaldehyde (1.2 eq) and $\operatorname{AcOK}(4 \mathrm{eq})$ in $\operatorname{AcOH}(\mathrm{C}=0.1 \mathrm{M})$ was heated in a sealed tube in a microwave oven (Anton Paar) at $120{ }^{\circ} \mathrm{C}$ for 3 h . Upon completion (followed by consumption of the heteroarylcarboxaldehyde on TLC), the mixture was brought back to room temperature, slowly added on sat. $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$. The precipitated solid was filtered off on a fritted-glass funnel, adsorbed on silica and purified by FC (see details below). After FC, higher purity may be achieved by reprecipitation, trituration, or recrystallization (see details below).

Synthesis of (Z)-5-(benzo[d][1,2,3]thiadiazol-6-ylmethylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4-one (3)

Compound (3) was synthesized according to GP10-B on a $276 \mu \mathrm{~mol}$ scale of intermediate (2.1), with 1.2 eq of aldehyde (7.1). Purification by FC (elution: DCM/MeOH: 99/1 to 95/5). The final product required a trituration in min. ACN at $0{ }^{\circ} \mathrm{C}$. Yellow solid. Isolated yield: $49 \%(44 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.59\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.91(\mathrm{~s}, 1 \mathrm{H}), 8.58$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 3.76$ (br s, 1H), $1.94(\mathrm{~s}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.16(\mathrm{~m}$, 1H). $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$328.3. $\mathrm{HPLC}: 96 \%(Z)+2 \%(E)$.

Synthesis of (Z)-2-(cyclohexylamino)-5-((1-methyl-1H-benzo[d]imidazol-6-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (9)

Compound (9) was synthesized according to GP10-A on a $400 \mu \mathrm{~mol}$ scale of intermediate (2.1), with 1.2 eq of aldehyde (7.5). Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}\left(7 \mathrm{~N} \mathrm{NH}_{3}\right): 99 / 1$ to $94 / 6$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Pale yellow solid. Isolated yield: 47% $(60 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.23$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.43 (br s, 1H), $8.14(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.67$ $-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.13(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$324.2. HPLC: 97\%.

Synthesis of (Z)-2-(cyclohexylamino)-5-((1-methyl-1H-benzo[d]imidazol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (10)

Compound (10) was synthesized according to GP10-A on a $352 \mu \mathrm{~mol}$ scale of intermediate (2.1), with 1.2 eq of aldehyde (7.6). Purification by FC (elution: DCM/MeOH ($7 \mathrm{~N} \mathrm{NH}_{3}$): 99/1 to 94/6). The final product required a trituration in min. ACN at $0{ }^{\circ} \mathrm{C}$. Colorless solid. Isolated yield: $40 \%(55 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.20$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.44 (br s, 1H), $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.06\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.44 (s, $1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.30(\mathrm{~m}, 4 \mathrm{H})$, $1.30-1.16(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$324.3. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d][1,2,3]thiadiazol-6-ylmethylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-one (18)

Compound (18) was synthesized according to GP10-B on a $276 \mu \mathrm{~mol}$ scale of intermediate (2.2), with 1.2 eq of aldehyde (7.1). Purification by FC (elution: DCM/MeOH: 99/1 to 95/5). The final product required a trituration in min. ACN at $0^{\circ} \mathrm{C}$. Yellow solid. Isolated yield: $26 \%(24 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.49\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.94(\mathrm{~s}, 1 \mathrm{H}), 8.58$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 3.98$
(br s, 1H), $2.07-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.42(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$342.3. HPLC: $96 \%(Z)+$ 3\% (E)

Synthesis of (Z)-2-(cycloheptylamino)-5-((1-methyl-1 H-benzo[d]imidazol-6-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (24)

Compound (24) was synthesized according to GP10-A on a $276 \mu \mathrm{~mol}$ scale of intermediate (2.2), with 1.2 eq of aldehyde (7.5). Purification by FC (elution: DCM/MeOH ($7 \mathrm{~N} \mathrm{NH}_{3}$): 99/1 to 94/6). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Pale yellow solid. Isolated yield: 31% (59 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.15$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.45(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 3.97$ (br s, 1H), 3.83 (s, 3H), $2.11-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.40$ $(\mathrm{m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 338.3$. HPLC: $>98 \%$.

Synthesis of (Z)-2-(cycloheptylamino)-5-((1-methyl-1 H -benzo[d] imidazol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (25)

Compound (25) was synthesized according to GP10-A on a $352 \mu \mathrm{~mol}$ scale of intermediate (2.2), with 1.2 eq of aldehyde (7.6). Purification by FC (elution: DCM/MeOH ($7 \mathrm{~N} \mathrm{NH}_{3}$): 99/1 to 94/6). The final product required a trituration in min. ACN at $0{ }^{\circ} \mathrm{C}$. Colorless solid. Isolated yield: $54 \%(74 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.11$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.46 (s, 1H), $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.79-1.41(\mathrm{~m}, 10 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$338.3. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-(benzo[d][1,2,3]thiadiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (33)

Compound (33) was synthesized according to GP10-B on a $276 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of aldehyde (7.1). Instead of a purification by FC, the solid isolated after precipitation directly underwent two successive triturations in refluxing EtOH. Beige solid. Isolated yield: $70 \%(70 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.89$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.98 (s, $1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.52-8.39(\mathrm{~m}, 1 \mathrm{H}), 7.02\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H})$, $2.31-2.02(\mathrm{~m}, 9 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H})$. MS (ESI'): [M+H] ${ }^{+}$380.3. HPLC: 96%.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-(benzo[d]0xazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (36)

Compound (36) was synthesized according to GP10-B on a $429 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of aldehyde (7.4). Purification by FC (elution: DCM/MeOH: 99/1 to 94/6). Beige solid. Isolated yield: $19 \%(19 \mathrm{mg})$. The final product required a trituration in ACN at $0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.80\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.75(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~s}$, $1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 6.42 (s, $1 \mathrm{H}), 2.30-1.95(\mathrm{~m}, 9 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H})$. MS (ESI $)$: $[\mathrm{M}+\mathrm{H}]^{+} 363.3$. HPLC: 97%.

Synthesis of (Z)-5-((1H-benzo[d]imidazol-5-yl)methylene)-2-((adamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (38)

Compound (38) was synthesized according to GP10-A, on a $343 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of $1 H$-benzimidazole-5-carbaldehyde. Purification by FC (elution: DCM/MeOH: 99/1 to $9 / 1\left(7 \mathrm{~N} \mathrm{NH}_{3}\right)$. The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $19 \%(23 \mathrm{mg})$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 12.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.69\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}$,
$1 \mathrm{H}), 7.65-7.46(\mathrm{~m}, 1 \mathrm{H}), 6.60\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 2.37-1.94(\mathrm{~m}, 9 \mathrm{H}), 1.92$ $-1.52(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$362.3. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-((1-methyl-1H-benzo[d]imidazol-5-yl)methylene)-3,5-dihydro-4 \boldsymbol{H}-imidazol-4-one (40)

Compound (40) was synthesized according to GP10-A on a $321 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of aldehyde (7.6). Purification by FC (elution: DCM/MeOH ($7 \mathrm{~N} \mathrm{NH}_{3}$): 99/1 to 94/6). The final product required a trituration in min. EtOH at $0{ }^{\circ} \mathrm{C}$. Pale yellow solid. Isolated yield: $57 \%(69 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.80$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.47 (s, $1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.01(\mathrm{~m}, 9 \mathrm{H}), 1.81-1.60(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 376.3. HPLC: $>98 \%$.

Synthesis of (Z)-5-((1H-indazol-5-yl)methylene)-2-((adamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (41)

Compound (41) was synthesized according to GP10-A on a $427 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of $1 H$-indazole-5-carbaldehyde. Purification by FC (elution: DCM/MeOH (7 N NH 3) : 99/1 to $94 / 6)$. The final product required a trituration in min. EtOH at $0^{\circ} \mathrm{C}$. Pale yellow solid. Isolated yield: $36 \%(55 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 13.10$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.54 (s, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.55(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 376.2$. HPLC: 97\%.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-((2-methyl-2H-indazol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (43)

Compound (43) was synthesized according to GP10-A, on a $321 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of 2-methyl-2H-indazole-5-carbaldehyde. Purification by FC (elution: DCM/MeOH (7N NH_{3}): 99/1 to 94/6). The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: 27% (33 mg). Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.38(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.63\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.37(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 2.33-1.96(\mathrm{~m}, 9 \mathrm{H}), 1.71(\mathrm{~d}, J=23.1$ $\mathrm{Hz}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$376.4. $\mathrm{HPLC}:>98 \%$

Synthesis of (Z)-5-((1H-indol-5-yl)methylene)-2-((adamantan-1-yl)amino)-3,5-dihydro-4H-

 imidazol-4-one (44)

Compound (44) was synthesized according to GP10-A, on a $364 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of $1 H$-indole-5-carbaldehyde. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in min . EtOH . Isolated yield: $59 \%(69 \mathrm{mg}$). Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 9.74 (s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.40(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.48-6.30(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.00(\mathrm{~m}, 9 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 6 \mathrm{H})$. HPLC: $>98 \%$.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-((1-methyl-1H-indol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (45)

Compound (45) was synthesized according to GP10-A, on a $364 \mu \mathrm{~mol}$ scale of intermediate (2.3), with 1.2 eq of 1-methyl-1H-indole-5-carbaldehyde. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in min. EtOH. Isolated yield: $45 \%(61 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.74\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.30(\mathrm{~s}, 1 \mathrm{H})$,
$7.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.66\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.51-6.31(\mathrm{~m}$, $2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.00(\mathrm{~m}, 9 \mathrm{H}), 1.84-1.63(\mathrm{~m}, 6 \mathrm{H})$. HPLC: $>98 \%$.

7. NMR descriptions and synthetic protocols for Leucettinibs using pathway 1 (late-stage $\underline{\mathbf{S}}_{\text {n }} \underline{\text { Ar }}$

General protocol 11 - Addition of amines on (Z)-heteroarylmethylene-2-alkylsulfanyl-1H-imidazol-5-ones (GP11)

GP11-A: A stirred solution of the appropriate amine (x eq), (4Z)-4-heteroaryl-2-alkylsulfanyl-1H-imidazol-5-one ${ }^{(a)}(1 \mathrm{eq})$ in the appropriate solvent $(\mathrm{C}=0.3 \mathrm{M})$ was heated in a sealed tube (heating block or $\mu \mathrm{w}$) or sealable round flask. Upon completion (followed by consumption of the isothiourea on TLC), the mixture was brought back to room temperature.

- GP11-A : direct precipitation of the desired product : The reaction medium was stirred 1 h at $0^{\circ} \mathrm{C}$. The precipitated solid was filtered off on a fritted-glass funnel. High purity may be achieved after filtration by washing, reprecipitation, trituration, or recrystallization.
- GP11-B : the product failed to precipitate : the reaction mixture was concentrated in vacuo, adsorbed on silica, and purified by FC. High purity may be achieved after filtration by reprecipitation, trituration, or recrystallization.
- GP11-C : the product failed to precipitate : the reaction mixture was concentrated in vacuo. The resulting crude was triturated in EtOH (at r.t. or reflux), filtered off on a frittedglass funnel.
- (a) May require activation with AcOH depending on the amine (see details below).

General protocol 12 - Addition of amines on (Z)-5-(benzo[d]oxazol-6-ylmethylene)-2-(ethylthio)-3,5-dihydro-4H-imidazol-4-one (GP12)

- GP12 - Step 1: a stirred solution of the appropriate amine (x eq), (4Z)-4-(1,3-benzoxazol-6-ylmethylene)-2-alkylsulfanyl- $1 H$-imidazol-5-one (1 eq) in THF $(\mathrm{C}=0.3 \mathrm{M})$ was heated in a sealed tube (heating block). Upon completion (followed by consumption of the isothiourea on TLC), the mixture was brought back to room temperature. The precipitated red/brown solid was isolated by filtration, washed with ice-cold THF or dioxane and dried.
- GP12 - Step 2: a stirred solution of the previously isolated solid (1 eq) and $\mathrm{HC}(\mathrm{OEt})_{3}(25$ $\mathrm{eq})$ in toluene $(\mathrm{C}=0.3 \mathrm{M})$ was heated in a sealed tube in a microwave oven (Anton Paar) at $150^{\circ} \mathrm{C}$ for 1 h . Upon completion, the mixture was directly adsorbed on silica and purified by FC (see details below). Higher purity may be achieved by reprecipitation, trituration, or recrystallization (see details below).

Synthesis of (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4-one (1)

Compound (1) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.81 mmol scale of (9.1), with 5 eq of cyclohexylamine at $115{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Colorless solid. Isolated yield: $56 \%(315 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 300 K) $\delta 10.47$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 7.93 (s, 1H), 7.44 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{br}$ s, 1H), $1.89(\mathrm{br} \mathrm{s}$, $2 H), 1.71(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.05(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$314.2. HPLC: $>98 \%$.

[^0]

Compound (2) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 2.73 mmol scale of (9.4), with 4 eq of cyclohexylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Pale yellow solid. Isolated yield: 34% (303 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 300 K) of major tautomer $\delta_{\mathrm{H}} 10.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.90-8.65(\mathrm{~m}, 1 \mathrm{H})$, $8.37-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.39(\mathrm{~s}, 1 \mathrm{H}), 3.97$ $-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.05(\mathrm{~m}, 5 \mathrm{H})$. MS (ESI ${ }^{+}$) : $[\mathrm{M}+\mathrm{H}]^{+}$327.2. $\mathrm{HPLC}: ~>98 \%$

Synthesis of (Z)-2-(cyclohexylamino)-5-((2-methylbenzo[d]thiazol-6-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (4)

Compound (4) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $593 \mu \mathrm{~mol}$ scale of (9.5), with 4 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $69 \%(140 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, 343 K) of major tautomer $\delta_{\mathrm{H}} 10.14\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.78-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.20-7.95$ $(\mathrm{m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.37(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.66(\mathrm{~m}$, $1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.15(\mathrm{~m}, 5 \mathrm{H})$. MS (ESI^{+}): $[\mathrm{M}+\mathrm{H}]^{+}$341.2. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-5-ylmethylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4-one (5)

Compound (5) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $518 \mu \mathrm{~mol}$ scale of (9.7) with 4 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from

DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $49 \%(83 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.36\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.65-1.54$ $(\mathrm{m}, 1 \mathrm{H}), 1.47-1.15(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$327.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]oxazol-6-ylmethylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4-one (6)

Compound (6) was synthesized according to GP12 - step 1, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 915 μ mol scale of intermediate (9.9), with 12 eq of cyclohexylamine, at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The isolated aminophenol intermediate was cyclized according to GP12 - step 2. Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $9 / 1$). The final product required a reprecipitation from DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: 34% (96 mg , 2 steps). Beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 343 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.39\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.79-8.45(\mathrm{~m}, 2 \mathrm{H})$, $7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 2 \mathrm{H}), 1.83-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.11$ (m, 1H). MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$311.2. HPLC: 97%.

Synthesis of (Z)-2-(cyclohexylamino)-5-((2,3-dihydrobenzofuran-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (7)

Compound (7) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $365 \mu \mathrm{~mol}$ scale of (9.10), with 5 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Pale yellow solid. Isolated yield: $50 \%(56 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 343 K) of major tautomer $\delta_{\mathrm{H}} 10.10\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.73(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.43$ $-1.13(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$312.2. HPLC: $>98 \%$

Synthesis of (Z)-5-((1H-benzo[d]imidazol-5-yl)methylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4-one (8)

Compound (8) was synthesized according to GP11-B, in a THF/dioxane mixture (1/1, $0.3 \mathrm{M} /$ isothiourea), on a $387 \mu \mathrm{~mol}$ scale of (9.12), with 3 eq of cyclohexylamine and 15 eq of AcOH at $130{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH $\left(7 \mathrm{~N} \mathrm{NH}_{3}\right)$: 99/1 to $88 / 12$). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $24 \%(29 \mathrm{mg})$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 12.28\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 10.21 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.54$ (d, J=8.3 Hz, 1H), 7.08 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.09-1.83(\mathrm{~m}$, $2 \mathrm{H}), 1.80-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.12(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 310.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-((1H-indazol-5-yl)methylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4one (11)

Compound (11) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $734 \mu \mathrm{~mol}$ scale of (9.14), with 6 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Pale yellow solid. Isolated yield: $54 \%(123 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 343 K) of major tautomer $\delta_{\mathrm{H}} 13.08$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.51 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.06(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$310.2. HPLC: $>98 \%$

Synthesis of (Z)-2-(cyclohexylamino)-5-((1-methyl-1H-indazol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (12)

Compound (12) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $698 \mu \mathrm{~mol}$ scale of (9.15), with 5 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: 39% (88 mg). Colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 373 K) of major tautomer $\delta_{\mathrm{H}} 10.19\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $8.01(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H})$, $3.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.03-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.29(\mathrm{~m}, 4 \mathrm{H})$, $1.29-1.15(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$324.3. $\mathrm{HPLC}:>98 \%$

Synthesis of (Z)-2-(cyclohexylamino)-5-((2-methyl-2H-indazol-5-yl)methylene)-3,5-dihydro-4H-

 imidazol-4-one (13)

Compound (13) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $873 \mu \mathrm{~mol}$ scale of (9.17), with 4 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $50 \%(142 \mathrm{mg})$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 373 K) of major tautomer $\delta_{\mathrm{H}} 10.24$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.43-8.19(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.37(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H})$, 3.71 (br s, 1H), $1.94(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.13(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$324.3. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-((1H-indol-5-yl)methylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4one (14)

Compound (14) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.11 mmol scale of (9.18), with 5 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $58 \%(200 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.92$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.12 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.25(\mathrm{~s}, 1 \mathrm{H})$, $7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.90\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.54-6.34$ (m,
$2 \mathrm{H}), 3.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.17(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$309.3. HPLC: $>98 \%$.

Synthesis of (Z)-5-((1H-indol-5-yl)methylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4one (15)

Compound (15) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.05 mmol scale of (9.19), with 4 eq of cyclohexylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $46 \%(156 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.01$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.53-7.16(\mathrm{~m}$, $2 \mathrm{H}), 6.94\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $1.74(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.14(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 323.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-one (16)

Compound (16) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.085 mmol scale of (9.1), with 6 eq of cycloheptylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $30 \%(108 \mathrm{mg})$. Colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 343 K) of major tautomer $\delta_{\mathrm{H}} 9.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.32(\mathrm{~m}, 10 \mathrm{H})$. MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+}$328.2. $\mathrm{HPLC}:>98 \%$.

[^1]

Compound (17) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 12.20 mmol mmol scale of (9.4), with 4 eq of cycloheptylamine at $110^{\circ} \mathrm{C}$ (sealed round flask, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: 72\% (2.988 g). Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 300 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.40\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 9.05-$ $8.69(\mathrm{~m}, 1 \mathrm{H}), 8.42-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.39 $(\mathrm{s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 2 \mathrm{H}), 1.78-1.35(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 341.2 . \mathrm{HPLC}:>98 \%$

Synthesis of (Z)-2-(cycloheptylamino)-5-((2-methylbenzo[d]thiazol-6-yl)methylene)-3,5-dihydro-

 4H-imidazol-4-one (19)

Compound (19) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $369 \mu \mathrm{~mol}$ scale of $(\mathbf{9 . 6})$, with 4 eq of cycloheptylamine at $115^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $50 \%(66 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 343 K) of major tautomer $\delta_{\mathrm{H}} 10.29\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.93-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.26-7.98$ $(\mathrm{m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.38(\mathrm{~s}, 1 \mathrm{H}), 4.03-3.83(\mathrm{~m}$, $1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.40(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$355.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-5-ylmethylene)-2-(cycloheptylamino)-3,5-dihydro-4H-

 imidazol-4-one (20)

Compound (20) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $518 \mu \mathrm{~mol}$ scale of (9.7), with 4 eq of cycloheptylamine at $115{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold

THF, then pentane. Isolated yield: 32% (56 mg). Colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 343 K) of major tautomer $\delta_{\mathrm{H}} 10.25\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.08$ $(\mathrm{s}, 2 \mathrm{H}), 7.31\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.05-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.37(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$341.2. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (Z)-5-(benzo[d]oxazol-6-ylmethylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-one (21)

Compound (21) was synthesized according to GP12 - step 1, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 695 $\mu \mathrm{mol}$ scale of intermediate (9.9), with 6 eq of cycloheptylamine, at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The isolated aminophenol intermediate was cyclized according to GP12 - step 2. Purification by FC (elution: DCM/MeOH: 99/1 to $9 / 1$). The final product required a reprecipitation from DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: 38% (72 mg , 2 steps). Beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}}{ }^{1} \mathrm{H}$ NMR 10.29 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.63(\mathrm{~s}, 2 \mathrm{H})$, $7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H})$, $3.96(\mathrm{~s}, 1 \mathrm{H}), 2.09-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.35(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$325.2. HPLC: 95\%.

Synthesis of (Z)-2-(cycloheptylamino)-5-((2,3-dihydrobenzofuran-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (22)

Compound (22) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $288 \mu \mathrm{~mol}$ scale of (9.11), with 3 eq of cycloheptylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $62 \%(58 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.22\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.05(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.21-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.36(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$326.3. HPLC: $>98 \%$

Synthesis of (Z)-5-((1H-benzo[d]imidazol-5-yl)methylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-one (23)

Compound (23) was synthesized according to GP11-B, in THF/dioxane mixture (1/1, $0.3 \mathrm{M} /$ isothiourea), on a $387 \mu \mathrm{~mol}$ scale of (9.12), with 3 eq of cycloheptylamine and 15 eq of AcOH at $130{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH(7N NH3): 99/1 to $88 / 12$). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $34 \%(43 \mathrm{mg})$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 12.28\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 10.13 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.54$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.15-1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.77-1.33(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 324.3$. HPLC: $>98 \%$.

Synthesis of (Z)-5-((1H-indazol-5-yl)methylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-one (26)

Compound (26) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $368 \mu \mathrm{~mol}$ scale of (9.14), with 4 eq of cycloheptylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: 57% (68 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 12.91\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 10.03 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.49$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.03-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.12-$ $1.91(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.34(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 324.4$. HPLC: $>98 \%$.

Synthesis of (Z)-2-(cycloheptylamino)-5-((1-methyl-1H-indazol-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (27)

Compound (27) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $288 \mu \mathrm{~mol}$ scale of (9.16), with 3 eq of cycloheptylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $46 \%(43 \mathrm{mg})$. Colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 323 K) of major tautomer $\delta_{\mathrm{H}} 10.30\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.04(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.40(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 338.3$. HPLC: $>98 \%$.

Synthesis of (Z)-2-(cycloheptylamino)-5-((2-methyl-2H-indazol-5-yl)methylene)-3,5-dihydro-4H-

 imidazol-4-one (28)

Compound (28) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $368 \mu \mathrm{~mol}$ scale of (9.17), with 4 eq of cycloheptylamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: 49% (61 mg). Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 343 K) of major tautomer $\delta_{\mathrm{H}} 10.15\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.16-$ $7.96(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.09\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.37(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H})$, $3.94(\mathrm{~s}, 1 \mathrm{H}), 1.96(\mathrm{q}, ~ J=6.9,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.39(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 338.4 . \mathrm{HPLC}$: $>98 \%$.

Synthesis of (Z)-5-((1H-indol-5-yl)methylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-

 one (29)

Compound (29) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $369 \mu \mathrm{~mol}$ scale of (9.18), with 4 eq of cycloheptylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $18 \%(21 \mathrm{mg})$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 343 K) of major tautomer $\delta_{\mathrm{H}} 10.94$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.06 (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.28
(br s, 1H), $7.99-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.92\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 2 \mathrm{H})$, $3.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.97(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.85-1.36(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 323.4 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-((1H-indol-5-yl)methylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4one (30)

Compound (30) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $369 \mu \mathrm{~mol}$ scale of (9.19), with 4 eq of cycloheptylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $65 \%(80 \mathrm{mg})$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, $343 \mathrm{~K}) \delta_{\mathrm{H}} 10.06\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.26(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.18(\mathrm{~m}, 2 \mathrm{H})$, 6.95 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.56-6.29(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 2 \mathrm{H}), 1.77-$ $1.42(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$337.4. HPLC: $>98 \%$.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (31)

Compound (31) was synthesized according to GP11-A, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 1.53 mmol scale of intermediate (9.2), with 3 eq of adamantan-1-amine and 9 eq. of AcOH at $165{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was diluted with EtOH , isolated after filtration, washing with EtOH , then pentane. The final product required two successive triturations in EtOH at $0^{\circ} \mathrm{C}$. Pale yellow solid. Isolated yield: $21 \%(118 \mathrm{mg})$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}, 343 \mathrm{~K}\right) \delta 9.65$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.03 (br s, 1H), 7.27 (br $\mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.24(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 2.28-$ $2.00(\mathrm{~m}, 9 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$366.3. HPLC: $>98 \%$.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (32) (Leucettinib-92)

Compound (32) was synthesized according to GP11-A, in a dioxane/EtOH mixture (9/1, $0.3 \mathrm{M} /$ isothiourea), on a 54.48 mmol scale of intermediate (9.4), with 3.4 eq of adamantan-1-amine and 9 eq of AcOH at $155{ }^{\circ} \mathrm{C}$ (sealed round flask, heating block), for 36 h . The product directly precipitated in the reaction medium: it was diluted with EtOH , isolated after filtration, washing with EtOH , then pentane. The final product required two successive triturations in refluxing EtOH. Isolated yield: 41\% $(8.392 \mathrm{~g})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.99$ (br s, 1 H , $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.02(\mathrm{~m}, 9 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 379.2. HPLC: >98\%.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-((2-methylbenzo[d]thiazol-6-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (34)

Compound (34) was synthesized according to GP11-A, in a dioxane/EtOH mixture (9/1, $0.3 \mathrm{M} /$ isothiourea), on a $545 \mu \mathrm{~mol}$ scale of intermediate (9.6), with 4 eq of adamantan- 1 -amine and 6 eq of AcOH at $165^{\circ} \mathrm{C}$ (sealed tube, heating block), for 30 h . The product directly precipitated in the reaction medium: it was diluted with EtOH , isolated after filtration, washing with EtOH, then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 59% (127 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.95$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.94(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $\left.6.39(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.36-1.98(\mathrm{~m}, 9 \mathrm{H}), 1.90-1.56(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$393.3. HPLC: 98\%

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-(benzo[d] thiazol-5-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (35) (iso-Leucettinib-92)

Compound (35) was synthesized according to GP11-A, in a dioxane/EtOH mixture $(1 / 1, \mathrm{C}=0.2$ $\mathrm{M} /$ isothiourea), on a $545 \mu \mathrm{~mol}$ scale of intermediate (9.8), with 4 eq of adamantan-1-amine and 6 eq of AcOH , at $155^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold EtOH , then pentane. The final product required two successive triturations in refluxing EtOH . Isolated yield: $39 \%(81 \mathrm{mg})$. Beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.59$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.35 (s, $1 \mathrm{H}), 8.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 2 \mathrm{H}), 6.75\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 2.31-2.01(\mathrm{~m}$, 9H), $1.86-1.60(\mathrm{~m}, 6 \mathrm{H}) \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 379.3$. HPLC: $>98 \%$

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-((2,3-dihydrobenzofuran-5-yl)methylene)-3,5-dihydro-4H-imidazol-4-one (37)

Compound (37) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $288 \mu \mathrm{~mol}$ scale of (9.11), with 3 eq of adamantan-1-amine at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 40 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with EtOH , then pentane. The final product required a trituration in EtOH . Isolated yield: $58 \%(60 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.65$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 8.18 (s, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.25(\mathrm{~s}$, $1 \mathrm{H}), 4.54(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.00(\mathrm{~m}, 9 \mathrm{H}), 1.68(\mathrm{dt}, J=12.6,3.0 \mathrm{~Hz}, 6 \mathrm{H})$. MS (ESI $)$: $[\mathrm{M}+\mathrm{H}]^{+}$364.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-((1-methyl-1H-benzo[d]imidazol-6-yl)methylene)-

3,5-dihydro-4H-imidazol-4-one (39)

Compound (39) was synthesized according to GP11-A, in a THF/dioxane mixture (1/1, $0.3 \mathrm{M} /$ isothiourea), on a $551 \mu \mathrm{~mol}$ scale of ($\mathbf{9 . 2 0}$), with 3 eq of adamantan-1-amine and 10 eq of AcOH , at $160^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it isolated after filtration, washing with cold THF, then pentane. Pale yellow solid. Isolated yield: $33 \%(69 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.57(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{br}$
$\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.02(\mathrm{~m}, 9 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 376.3$. HPLC: $>98 \%$.

Synthesis of (Z)-2-((adamantan-1-yl)amino)-5-((1-methyl-1H-indazol-5-yl)methylene)-3,5-dihydro-4 H -imidazol-4-one (42)

Compound (42) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $273 \mu \mathrm{~mol}$ scale of (9.16), with 3 eq of adamantan-1-amine and 9 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 72 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a trituration in EtOH. Isolated yield: 52% (53 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.72$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.38(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ $(\mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.26$ $-2.00(\mathrm{~m}, 9 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 376.3$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(cyclopropylamino)-3,5-dihydro-4H-imidazol-4-one (46)

Compound (46) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of cyclopropylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: 71% (151 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.13\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}$, $1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}$, $1 \mathrm{H}), 3.04-2.62(\mathrm{~m}, 1 \mathrm{H}), 0.83-0.69(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.54(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 285.1$. HPLC: $>98 \%$.

[^2]

Compound (47) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $691 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 6 eq of butylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $25 \%(52 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}, 300 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.72\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.34$ $-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.74-$ $4.02(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 299.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(cyclopentylamino)-3,5-dihydro-4H-imidazol-4-one (48)

Compound (48) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $864 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 6 eq of cyclopentylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: 37%. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.53\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~s}$, $1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.43-$ $4.05(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$313.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(cyclooctylamino)-3,5-dihydro-4H-

 imidazol-4-one (49)

Compound (49) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 2.07 mmol scale of intermediate (9.3), with 4 eq eq of cyclooctylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for

12h. The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: 59% (435 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.43$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~m}$, $1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}$, $1 \mathrm{H}), 4.25-3.91(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.35(\mathrm{~m}, 14 \mathrm{H})$. MS (ESI') : $[\mathrm{M}+\mathrm{H}]^{+} 355.2$. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-2-methylcyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (50)

Compound (50) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of (\pm)-trans-2-methylcyclohexan-1-amine at $130^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $14 \%(36 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.49\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.92-$ $8.69(\mathrm{~m}, 1 \mathrm{H}), 8.27-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.36 $(\mathrm{s}, 1 \mathrm{H}), 3.65-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.23-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.13(\mathrm{~m}, 8 \mathrm{H}), 0.98-0.84(\mathrm{~m}, 3 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$341.2. HPLC: $>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclohexylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (51)

Compound (51) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of (R)-1-cyclohexylethan-1-amine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $35 \%\left(93 \mathrm{mg}\right.$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.34$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.34 (d, $J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $8.92-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.26-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (br s, 1H, NH, D2 O exchanged), $6.37(\mathrm{~s}, 1 \mathrm{H}), 4.12-3.39(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $1 \mathrm{H}), 1.26-0.96(\mathrm{~m}, 8 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 355.2$. HPLC: $>98 \%$.

Synthesis

of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)amino)-3,5-dihydro-4 H -imidazol-4-one (52)

Compound (52) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of ($1 R, 2 S, 5 R$)-2-isopropyl-5-methylcyclohexan-1-amine at 110 ${ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $32 \%(90 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.52$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.27-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (br s, 1H, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.36(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.20(\mathrm{~m}, 7 \mathrm{H}), 1.19-0.58(\mathrm{~m}, 11 \mathrm{H})$ MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}$383.3. HPLC: 91%.

Synthesis of of
(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(($(1 R, 2 R, 3 R, 5 S)-2,6,6-$ trimethylbicyclo[3.1.1]heptan-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (53)

Compound (53) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of $(1 R, 2 R, 3 R, 5 S)$-(-)-isopinocampheylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $60 \%(169 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.64$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 9.12-8.81(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.39(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.52$ (m, 1H), 2.40-2.28(m, 1H), 2.21-2.04(m, 1H), 2.04-1.87(m, 1H), $1.87-1.61(m, 2 H), 1.38-$ $0.89(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$381.2. HPLC: 95%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(spiro[3.3]heptan-2-ylamino)-3,5-dihydro-4H-imidazol-4-one (54)

Compound (54) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $847 \mu \mathrm{~mol}$ scale of (9.3), with 2 eq of spiro[3.3]heptan-2-amine hydrochloride and 2 eq of TEA at $110^{\circ} \mathrm{C}($ sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $61 \%(175 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.71$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.32-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged $), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.61-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 3 \mathrm{H})$, $1.99-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 339.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(spiro[2.5]octan-1-ylamino)-3,5-dihydro-4H-imidazol-4-one (55)

Compound (55) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $773 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 2 eq of spiro[2.5]octan-1-amine hydrochloride and 2 eq of TEA at 110 ${ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from $D C M /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $61 \%(167 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.68$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 9.14-8.80(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 2.72-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.20(\mathrm{~m}, 10 \mathrm{H}), 0.71(\mathrm{dd}, J=$ $7.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.55(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 353.2$. $\mathrm{HPLC}:>98 \%$.

Synthesis of $(\pm)-(Z)$-5-(benzo[d]thiazol-6-ylmethylene)-2-((-bicyclo[2.2.1]heptan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (56)

Compound (56) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of (\pm)-2-aminonorbornane hydrochloride and 3 eq of TEA at $130^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7).

The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $67 \%(170 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.30\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.97-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.40-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.30-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.18-1.02(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 339.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(($(2 R)$-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (57)

Compound (57) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 2 eq of (+)-bornanamine at $135^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $34 \%(97 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.19$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.92$ $(\mathrm{s}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.38(\mathrm{~s}, 1 \mathrm{H}), 4.50-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.14-0.61$ (m, 10H). MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$381.2. HPLC: 96\%.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3,3-difluorocyclopentyl)amino)-3,5-dihydro- 4 H -imidazol-4-one (58)

Compound (58) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3,3-difluorocyclopentan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 4 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: 93% (88 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.69$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.35-$ $8.11(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.54-4.31$ $(\mathrm{m}, 1 \mathrm{H}), 2.70-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 349.2$. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2,2-difluorocyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (59)

Compound (59) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-2,2-difluorocyclohexan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 4h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$) then PTLC. Isolated yield: $43 \%(42 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.46\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.93-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.43-$ $8.14(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.48(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.12$ $(\mathrm{m}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.38(\mathrm{~m}, 7 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 363.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3,3-difluorocyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (60)

Compound (60) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3,3-difluorocyclohexan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 4 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: 76% (75 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.76\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.98-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.37-8.12(\mathrm{~m}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 4.21-3.82(\mathrm{~m}, 1 \mathrm{H})$, $2.48-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.61-1.36(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$363.1. HPLC: $>98 \%$.

Synthesis of (\boldsymbol{Z})-5-(benzo[d]thiazol-6-ylmethylene)-2-((4,4-difluorocyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (61)

Compound (61) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of 4,4-difluorocyclohexan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 54h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: $41 \%(40 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.97-8.65(\mathrm{~m}, 1 \mathrm{H}), 8.42-8.16(\mathrm{~m}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.80(\mathrm{~m}, 1 \mathrm{H})$, $2.19-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.82-1.63(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 363.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3,3-difluorocycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (62)

Compound (62) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3,3-difluorocycloheptan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 8 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: 64% (65 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.52\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 9.11-8.85(\mathrm{~m}, 1 \mathrm{H}), 8.30-$ $8.09(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.19-3.99$ $(\mathrm{m}, 1 \mathrm{H}), 2.70-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.25-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.50(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 377.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-2-hydroxycyclopentyl)amino)-3,5-dihydro-4H-imidazol-4-one (63)

Compound (63) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-2-aminocyclopentan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1
to $93 / 7$). The final product required a trituration in refluxing EtOH. Isolated yield: 52% (47 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.13$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.41-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.09-7.94(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.73\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.22-3.96(\mathrm{~m}, 2 \mathrm{H})$, $2.11-1.51(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$329.2. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-2-hydroxycyclopentyl)amino)-3,5-dihydro-4H-imidazol-4-one (64)

Compound (64) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-2-aminocyclopentan-1-ol at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in refluxing EtOH. Isolated yield: 30% (27 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.53\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.93$ $-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.35-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.94\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.10-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.42(\mathrm{~m}, 4 \mathrm{H})$. MS (ESI ${ }^{+}$) : $[\mathrm{M}+\mathrm{H}]^{+} 329.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1R,2R)-2-hydroxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (65)

Compound (65) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of $(1 R, 2 R)$-2-aminocyclohexan- 1 -ol at $100{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $11 \%(23 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.45$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.30 $(\mathrm{s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.31-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.09-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.35\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.39(\mathrm{~s}, 1 \mathrm{H}), 4.64\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.59-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.11(\mathrm{~m}, 4 \mathrm{H})$. MS (ESI ${ }^{+}$) : $[\mathrm{M}+\mathrm{H}]^{+}$343.2. HPLC: 97%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1S,2S)-2-hydroxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (66)

Compound (66) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of ($1 S, 2 S$)-2-aminocyclohexan-1-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $94 / 6$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $20 \%(51 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.45$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.30 $(\mathrm{s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.31-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.09-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.35\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.39(\mathrm{~s}, 1 \mathrm{H}), 4.64\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.59-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.11(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$343.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1S,2R)-2-hydroxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (67)

Compound (67) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of (9.4), with 3 eq of $(1 R, 2 S)$-2-aminocyclohexan-1-ol hydrochloride and 4 eq of DIPEA at 140 ${ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $22 \%(56 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.18$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.31 (s, 1H), $8.80(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.02-3.74(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.47$ $(\mathrm{m}, 6 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$343.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1R,2S)-2-hydroxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (68)

Compound (68) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of (9.4), with 3 eq of ($1 S, 2 R$)-2-aminocyclohexan-1-ol hydrochloride and 4 eq of DIPEA at 140 ${ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH: 99/1 to 9/1). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $27 \%(70 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.18$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.31 $(\mathrm{s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.02-3.74(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.47$ $(\mathrm{m}, 6 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 343.2$. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-3-hydroxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (69)

Compound (69) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-3-aminocyclohexan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: $64 \%\left(60 \mathrm{mg}\right.$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.24\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.31-8.05(\mathrm{~m}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $3.88-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.69(\mathrm{~m}, 3 \mathrm{H})$, $1.41-1.14(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$343.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (土)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-3-hydroxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (70)

Compound (70) was synthesized according to GP11-B, in THF/EtOH mixture (1/1, $0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-3-aminocyclohexan-1-ol and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: 74\% (69 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.34$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.33 $(\mathrm{s}, 1 \mathrm{H}), 8.97-8.55(\mathrm{~m}, 1 \mathrm{H}), 8.37-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.53-4.32\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.24-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.90-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.34(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 343.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-4-hydroxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (71)

Compound (71) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of trans-4-aminocyclohexan-1-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $63 \%(161 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.34$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.31 (s, $1 \mathrm{H}), 9.05-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.41-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.36\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.79-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.52-$ $3.34(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.20(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 343.2$. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-2-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (72)

Compound (72) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-2-aminocycloheptan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 10h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in refluxing EtOH. Isolated yield: 56% (54 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.15$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{br} \mathrm{s}$,
$1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.96\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.08-3.77(\mathrm{~m}, 2 \mathrm{H})$, $1.98-1.29(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$357.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d] thiazol-6-ylmethylene)-2-(((1R,2R)-2-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (73)

Compound (73) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of (9.3), with 3 eq of $(1 R, 2 R)$-2-aminocycloheptan-1-ol at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $49 \%(130 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.46\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 9.08$ $-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.76\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.89-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.37(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$357.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1S,2S)-2-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (74)

Compound (74) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of (9.4), with 3 eq of $(1 S, 2 S)$-2-aminocycloheptan-1-ol at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $45 \%(121 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.46\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 9.08$ - $8.72(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.76\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.89-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.37(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 357.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-3-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (75)

Compound (75) was synthesized according to GP11-B, in a THF/EtOH mixture $(2 / 1$, $0.3 \mathrm{M} /$ isothiourea), on a $218 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-3-aminocycloheptan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 46% (36 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.15$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.99-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.28-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.23\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.05-3.91(\mathrm{~m}, 1 \mathrm{H})$, $3.90-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.39(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 357.2 . \mathrm{HPLC}:$ $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-3-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (76)

Compound (76) was synthesized according to GP11-B, in a THF/EtOH mixture (2/1, $0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-3-aminocycloheptan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 31h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: $67 \%(65 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.33$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.99-8.65(\mathrm{~m}, 1 \mathrm{H}), 8.34-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.47\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.19-4.01(\mathrm{~m}, 1 \mathrm{H})$, $3.96-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.30(\mathrm{~m}, 7 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 357.2$. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-4-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (77)

Compound (77) was synthesized according to GP11-B, in a THF/EtOH mixture (2/1, $0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-4-aminocycloheptan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 22h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: 64% (62 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.37$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.97-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.36-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.46-4.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.09-3.83(\mathrm{~m}$, $1 \mathrm{H}), 3.83-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$357.2. HPLC: $>98 \%$.

Synthesis of (1S,4S)- or (1R,4R)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((4-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (78) (ENANTIOMER 1*)

Compound (78) and (79) required the initial synthesis of the racemic compound. Synthesis of racemic compound: reaction was carried out according to GP11-B, in a THF/EtOH mixture $(2 / 1$, $0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-4-aminocycloheptan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 43\% (42 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.36$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.23\left(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.04-3.82(\mathrm{~m}$, $1 \mathrm{H}), 3.79-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.39(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 357.2 . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$357.2. $\mathrm{HPLC}:>98 \%$.

Preparative chiral SFC from racemic compound (200 mg): Chiralpak IG ($20 \mathrm{~mm} \times 250 \mathrm{~mm}$, 5 um), $\left(40{ }^{\circ} \mathrm{C}, 50 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 500 \mu \mathrm{~L}(8 \mathrm{mg}) /\right.$ injection; isocratic conditions: $4 / 6$ $\left(\mathrm{MeOH} / \mathrm{CO}_{2}\right)$. Isolated quantity of enantiomer (78): $70 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR of (78) was identical to racemate.

Analytical chiral SFC of racemic mixture: Chiralpak IG (4.6 mm x $250 \mathrm{~mm}, 5 \mathrm{um})$, ($40{ }^{\circ} \mathrm{C}, 4$ $\mathrm{mL} / \mathrm{min}, 210-400 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 1 \mu \mathrm{~L}$; isocratic conditions: $1 / 1\left(\mathrm{MeOH} / \mathrm{CO}_{2}(0.2 \% \mathrm{v} / \mathrm{v} \mathrm{NH} 3)\right), t_{\mathrm{R}}(78)$: $1.79 \mathrm{~min}, t_{\mathrm{R}}(79): 2.34 \mathrm{~min}$.
Analytical chiral SFC of (78) (conditions as described above): $t_{\mathrm{R}} \mathbf{(7 8)}$ after chiral purification: 1.80 \min, ee $=>99 \%$ (first eluting enantiomer).
HPLC: $>98 \%$.
*The relative configuration of (78) is trans, but the absolute configuration of the chiral centers could not be assigned. The absolute stereochemistry of (78) is therefore either $(1 R, 4 R)$ or $(1 S, 4 S)$.

Synthesis of $(1 S, 4 S)$ - or $(1 R, 4 R)-(Z)-5$-(benzo[d]thiazol-6-ylmethylene)-2-((4-hydroxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (79) (ENANTIOMER 2*)

Preparative chiral SFC from racemic compound (200 mg): Chiralpak IG ($20 \mathrm{~mm} \times 250 \mathrm{~mm}$, 5 um), (40 ${ }^{\circ} \mathrm{C}, 50 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 500 \mu \mathrm{~L}(8 \mathrm{mg}) /$ injection; isocratic conditions: $4 / 6$ $\left(\mathrm{MeOH} / \mathrm{CO}_{2}\right)$. Isolated quantity: $70 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR of (79) was identical to racemate and (78).
Analytical chiral SFC of racemic mixture: Chiralpak IG ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mathrm{um}$), ($40{ }^{\circ} \mathrm{C}, 4$ $\mathrm{mL} / \mathrm{min}, 210-400 \mathrm{~nm}$, inj. vol.: $1 \mu \mathrm{~L}$; isocratic conditions: $1 / 1\left(\mathrm{MeOH} / \mathrm{CO}_{2}(0.2 \% \mathrm{v} / \mathrm{v} \mathrm{NH} 3)\right), t_{\mathrm{R}}(78)$: $1.79 \mathrm{~min}, t_{\mathrm{R}}(79): 2.34 \mathrm{~min}$.

Analytical chiral SFC of (79) (conditions as described above): $t_{\mathrm{R}}(\mathbf{7 9})$ after chiral purification: 2.36 \min, ee $=>97.8 \%$ (second eluting enantiomer).
HPLC: $>98 \%$.
*The relative configuration of (79) is trans, but the absolute configuration of the chiral centers could not be assigned. The absolute stereochemistry of (79) is therefore either $(1 S, 4 S)$ or $(1 R, 4 R)$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-2-methoxycyclopentyl)amino)-3,5-dihydro-4H-imidazol-4-one (80)

Compound (80) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate intermediate (9.4), with 3 eq of (\pm)-cis-2-methoxycyclopentan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 8 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: $84 \%\left(80 \mathrm{mg}\right.$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.18\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}$, $1 \mathrm{H}), 8.44-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.15-7.97(\mathrm{~m}, 1 \mathrm{H}), 6.96\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged $), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.24$ $(\mathrm{s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.50(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 343.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1R,2R)-2-methoxycyclopentyl)amino)-3,5-dihydro-4H-imidazol-4-one (81)

Compound (81) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of ($1 R, 2 R$)-2-methoxycyclopentan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in refluxing EtOH. Isolated yield: 75% (70 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.12$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.97-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.38$ $(\mathrm{s}, 3 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.58(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 343.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1S,2S)-2-methoxycyclopentyl)amino)-3,5-dihydro-4H-imidazol-4-one (82)

Compound (82) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of ($1 S, 2 S$)-2-methoxycyclopentan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 16 h . Purification by FC (elution:

DCM/MeOH: 99/1 to 93/7). Isolated yield: 83\% (80 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}, 343 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.12\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.97-8.76(\mathrm{~m}$, $1 \mathrm{H}), 8.25-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H})$, $4.21-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.80$ $-1.58(\mathrm{~m}, 4 \mathrm{H})$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$343.2. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-2-methoxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (83)

Compound (83) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-2-methoxycyclohexan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: 78% (78 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.06$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.15-3.83(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.30(\mathrm{~m}, 4 \mathrm{H})$. MS (ESI ${ }^{+}$) : $[\mathrm{M}+\mathrm{H}]^{+}$357.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1R,2R)-2-methoxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (84)

Compound (84) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of ($1 R, 2 R$)-2-methoxycyclohexan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: $63 \%(61 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}, 323 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.20$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.39(\mathrm{~s}, 1 \mathrm{H}), 3.82-$ $3.53(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.15$ (m, 4H). MS (ESI $\left.{ }^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$357.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1S,2S)-2-methoxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (85)

Compound (85) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of ($1 S, 2 S$)-2-methoxycyclohexan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 60% (58 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}, 323 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.20$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.39(\mathrm{~s}, 1 \mathrm{H}), 3.82-$ $3.53(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.15$ (m, 4H). MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$357.2. HPLC: $>98 \%$.

Synthesis of (土)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-3-methoxycyclohexyl)amino)-3,5-dihydro- 4 H -imidazol-4-one (86)

Compound (86) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-3-methoxycyclohexan-1-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 79\% (77 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.29$ (br s, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 9.00-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.34-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.22(\mathrm{~m}, 4 \mathrm{H}), 2.39-$ $2.24(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.15(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 357.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-methoxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (87) (ENANTIOMER 1*)

Compound (87) and (88) required the initial synthesis of the racemic compound. Synthesis of racemic compound: reaction was carried out according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-3-methoxycyclohexan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 22 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 69% (67 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.40\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.99-8.76(\mathrm{~m}$, $1 \mathrm{H}), 8.31-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H})$, $4.14-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.76$ $-1.35(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$357.2. $\mathrm{HPLC}:>98 \%$.

Preparative chiral SFC from racemic compound (189 mg): Lux A2 ($21.2 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mathrm{um}$), $\left(40{ }^{\circ} \mathrm{C}, 50 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 500 \mu \mathrm{~L}(10 \mathrm{mg}) /\right.$ injection; isocratic conditions: 25/75 $\left(\mathrm{MeOH} / \mathrm{CO}_{2}\right)$. Isolated quantity of enantiomer (87): $75 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR of (87) was identical to racemate. Analytical chiral SFC of racemic mixture: Lux A2 (4.6 mm x $250 \mathrm{~mm}, 5 \mathrm{um}),\left(40^{\circ} \mathrm{C}, 4 \mathrm{~mL} / \mathrm{min}\right.$, $210-400 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 1 \mu \mathrm{~L}$; isocratic conditions: $25 / 75\left(\mathrm{MeOH} / \mathrm{CO}_{2}(0.2 \% \mathrm{v} / \mathrm{v} \mathrm{NH} 3)\right), t_{\mathrm{R}}(87): 5.06$ $\min , t_{\mathrm{R}}(\mathbf{8 8}): 6.27 \mathrm{~min}$.

Analytical chiral SFC of (87) (conditions as described above): $t_{\mathrm{R}}(\mathbf{8 7})$ after chiral chiral purification: 5.04 min , ee $=>99 \%$ (first eluting enantiomer).

HPLC: >98\%
*The relative configuration of (87) is trans, but the absolute configuration of the chiral centers could not be assigned. The absolute stereochemistry of (79) is therefore either $(1 S, 3 S)$ or $(1 R, 3 R)$

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-methoxycyclohexyl)amino)-3,5-dihydro-

 4H-imidazol-4-one (88) (ENANTIOMER 2*)

Preparative chiral SFC from racemic compound (189 mg): Lux A2 ($21.2 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mathrm{um}$), $\left(40{ }^{\circ} \mathrm{C}, 50 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~mm}, \mathrm{~V}_{\text {injection }}: 500 \mu \mathrm{~L}(10 \mathrm{mg}) /\right.$ injection; isocratic conditions: $25 / 75$
$\left(\mathrm{MeOH} / \mathrm{CO}_{2}\right)$. Isolated quantity of enantiomer (88): $75 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR of $(\mathbf{8 8})$ was identical to racemate and (87).

Analytical chiral SFC of racemic mixture: Lux A2 (4.6 mm x $250 \mathrm{~mm}, 5 \mathrm{um})$, ($40{ }^{\circ} \mathrm{C}, 4 \mathrm{~mL} / \mathrm{min}$, $210-400 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 1 \mu \mathrm{~L}$; isocratic conditions: $25 / 75\left(\mathrm{MeOH} / \mathrm{CO}_{2}(0.2 \% \mathrm{v} / \mathrm{v} \mathrm{NH} 3)\right), t_{\mathrm{R}}(\mathbf{8 7}): 5.06$ $\min , t_{\mathrm{R}}(\mathbf{8 8}): 6.27 \mathrm{~min}$.

Analytical chiral SFC of (88) (conditions as described above): $t_{\mathrm{R}}(\mathbf{8 8})$ after chiral chiral purification: 6.25 min , ee $=>98 \%$. (second eluting enantiomer).

HPLC: $>98 \%$
*The relative configuration of (88) is trans, but the absolute configuration of the chiral centers could not be assigned. The absolute stereochemistry of $(\mathbf{8 8})$ is therefore either $(1 R, 3 R)$ or $(1 S, 3 S)$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-4-methoxycyclohexyl)amino)-3,5-dihydro-4H-imidazol-4-one (89)

Compound (89) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of trans-4-methoxycyclohexan-1-amine at $130{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $27 \%(73 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.51\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}$, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.41 (s , $1 \mathrm{H}), 3.82-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.22(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$357.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-2-methoxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (90)

Compound (90) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-2-methoxycycloheptan-1-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 79\%
(80 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.04$ (br s, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.25-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}$, $3 \mathrm{H}), 2.03-1.28(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 371.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-2-methoxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (91)

Compound (91) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-2-methoxycycloheptan-1-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 79% (80 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.39$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}$, $3 \mathrm{H}), 1.93-1.40(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 371.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-3-methoxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (92)

Compound (92) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-3-methoxycycloheptan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 22 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 77% (78 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}, 323 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.50\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.27$ - $8.13(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.14-$ $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.38$ (m, 7H). MS (ESI $\left.{ }^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$371.1. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-3-methoxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (93)

Compound (93) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-3-methoxycycloheptan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 74% (75 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.44\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.19$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.21-$ $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.33$ (m, 6H). MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$371.2. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-3-methoxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (94)

Compound (94) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-4-methoxycycloheptan-1-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 68\% $(69 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.28-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.08-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}$, $3 H), 2.01-1.48(\mathrm{~m}, 9 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$371.2. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-3-methoxycycloheptyl)amino)-3,5-dihydro-4H-imidazol-4-one (95)

Compound (95) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-4-methoxycycloheptan-1-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: $73 \%(74 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.46$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 9.03-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.31-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.09-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.24$ $(\mathrm{s}, 3 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.44(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 371.2$. HPLC: $>98 \%$.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-hydroxybutan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (96)

Compound (96) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of $(\mathbf{9 . 3})$, with 4 eq of $(R)-(-)$-2-amino-propan-1-ol at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: $6 \%(13 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.42$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.35 (s, 1H), $8.92(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.87\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.34-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.42(\mathrm{~m}$, $2 H), 1.86-1.57(m, 1 H), 1.60-1.34(m, 2 H), 1.15-0.77(m, 6 H) . M S(E S I+):[M+H]^{+} 345.2$. HPLC: $>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-hydroxybutan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (97)

Compound (97) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of $(R)-(-)$-2-amino-propan- $1-\mathrm{ol}$ at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: $8 \%(20 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.42$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged $), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.87\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged $), 4.34-4.04(\mathrm{~m}, 1 \mathrm{H})$,
$3.62-3.42(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.15-0.77(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$
$[\mathrm{M}+\mathrm{H}]^{+}$345.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-hydroxy-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (98)

Compound (98) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 21.79 mmol scale of intermediate (9.4), with 4 eq of (R)-leucinol at $120^{\circ} \mathrm{C}$ (sealable round flask, heating block), for 12 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required two triturations in ACN at $0^{\circ} \mathrm{C}$. Isolated yield: 45% (3.383 g). Bright yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.22\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 8.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.68$ (br s, $1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $4.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.36$ (m, 2H), $1.05-0.86(\mathrm{~m}, 6 \mathrm{H})$. MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$345.2. HPLC: 97\%.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-hydroxy-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (99)

Compound (99) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of (S)-leucinol at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 39\% (99 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.22$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.68\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60-3.44(\mathrm{~m}, 2 \mathrm{H})$, $1.79-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.86(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 345.2$. HPLC: $>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclopropyl-3-hydroxypropan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (100)

Compound (100) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-2-amino-3-cyclopropylpropan-1-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 48% (45 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.37$ (br s, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.98-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.34-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.77\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.11-3.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.70-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.87-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.52-$ $0.37(\mathrm{~m}, 2 \mathrm{H}), 0.25-0.03(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 343.1$. HPLC: $>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclobutyl-3-hydroxypropan-2-yl)amino)-3,5-dihydro-4 H -imidazol-4-one (101)

Compound (101) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-2-amino-3-cyclobutylpropan-1-ol at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 46\% $(45 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 9.03-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.86\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.14-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.45(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 357.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclopentyl-3-hydroxypropan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (102)

Compound (102) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-2-amino-3-cyclopentylpropan-1-ol at $120^{\circ} \mathrm{C}$ (sealed tube,
heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: $52 \%(52 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.11$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 9.03-8.85(\mathrm{~m}, 1 \mathrm{H}), 8.28-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.07-7.95$ $(\mathrm{m}, 1 \mathrm{H}), 6.91\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.55\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 4.08 $-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.08(\mathrm{~m}, 11 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 371.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclohexyl-3-hydroxypropan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (103)

Compound (103) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-2-amino-3-cyclohexylpropan-1-ol at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: $53 \%(56 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.07$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 9.03-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.35-8.04(\mathrm{~m}, 1 \mathrm{H}), 8.04-7.90$ $(\mathrm{m}, 1 \mathrm{H}), 6.90\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.54\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 4.14 $-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.95-0.90(\mathrm{~m}, 13 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 385.2$. HPLC: 96%.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclohexyl-2-hydroxyethyl)amino)-3,5-dihydro-4H-imidazol-4-one (104)

Compound (104) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-2-amino-2-cyclohexylethan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 44h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$) then PTLC. Isolated yield: $43 \%(43 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.26\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.81-4.55(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $3.91-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.50(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.34-0.98$ $(\mathrm{m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$371.2. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-cyclohexyl-2-hydroxyethyl)amino)-

3,5-dihydro-4H-imidazol-4-one (105)

Compound (105) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-2-amino-1-cyclohexylethan-1-ol hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 2.5 h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: 72% (73 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.54$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.29-8.09(\mathrm{~m}$, $1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $3.82-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.45-0.91(\mathrm{~m}$, $6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 371.3$. $\mathrm{HPLC}:>98 \%$.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-methoxy-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (106)

Compound (106) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a 2.91 mmol scale of intermediate (9.4), with 2.5 eq of (R)-1-methoxy-4-methylpentan-2-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $74 \%(772 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.16$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.27(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.66(\mathrm{~m}$, $1 \mathrm{H}), 1.62-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.14-0.81(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 359.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (S, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-methoxy-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (107)

Compound (107) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 2.91 mmol scale of intermediate (9.4), with 2.5 eq of (S)-1-methoxy-4-methylpentan-2-amine hydrochloride and 4 eq DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: 84% (82 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.16$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.27(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.53$ $-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.14-0.81(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$359.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-ethoxy-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (108)

Compound (108) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $291 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of (R)-1-ethoxy-4-methylpentan-2-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in ACN at $0^{\circ} \mathrm{C}$. Isolated yield: $34 \%(37 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- $d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.35\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}$, $1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}$, $1 \mathrm{H}), 4.24-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.39(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.82(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 373.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclopropoxy-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (109)

Compound (109) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $291 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of (R)-1-cyclopropoxy-4-methylpentan-2-amine at $135{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in ACN at $0^{\circ} \mathrm{C}$. Isolated yield: $40 \%(59 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.34$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.30 (s, 1H), $8.91(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.31(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.57-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.83(\mathrm{~m}, 6 \mathrm{H}), 0.57-0.37(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 385.3$. HPLC: $>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-(tert-butoxy)-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (110)

Compound (110) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $363 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of (R)-1-(tert-butoxy)-4-methylpentan-2-amine at $140{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: $70 \%(102 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.31$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.21-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.32(\mathrm{~m}, 2 \mathrm{H}), 1.81-$ $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 401.3$. HPLC: $>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-(benzyloxy)-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (111)

Compound (111) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $363 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of (R)-1-(benzyloxy)-4-methylpentan-2-amine at $135^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 30% (47 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.40(\mathrm{br} \mathrm{s}$,
$1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.06\left(\mathrm{~m}, 5 \mathrm{H}+\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.14(\mathrm{~m}, 1 \mathrm{H})$, $3.66-3.49(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.87(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$435.2. HPLC: 97\%.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-((4-fluorobenzyl)oxy)-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (112)

Compound (112) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $363 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of (R)-1-((4-fluorobenzyl)oxy)-4-methylpentan-2-amine at 135 ${ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 35% (58 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.39\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.5,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.10(\mathrm{t}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.61-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.84(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 453.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-cyclohexyl-2-methoxyethyl)amino)-

 3,5-dihydro-4H-imidazol-4-one (113)

Compound (113) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-1-cyclohexyl-2-methoxyethan-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: $74 \%(77 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.27$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.38-9.24$ (m, $1 \mathrm{H}), 8.94-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.12-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.24\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.50-6.25(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.53$ $(\mathrm{m}, 6 \mathrm{H}), 1.30-1.03(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$385.2. HPLC: $>98 \%$.

Synthesis of $(\pm)-(Z)$-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-cyclohexyl-2-methoxyethyl)amino)-

3,5-dihydro-4H-imidazol-4-one (114)

Compound (114) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of 2-cyclohexyl-2-methoxyethan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 2.5 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: 80% (87 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.46\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.55(\mathrm{~m}$, $1 \mathrm{H}), 3.45-3.33(\mathrm{~m}, 4 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.28-1.07(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$385.2. HPLC: 97%.

Synthesis of methyl (Z)-(4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-L-alaninate (115)

Compound (115) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of methyl L-alaninate hydrochloride and 6 eq of TEA at $140^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $17 \%(43 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.85$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged ed), $8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.68-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI ${ }^{+}$) : $[\mathrm{M}+\mathrm{H}]^{+}$331.1. HPLC: 97%.

Synthesis of methyl (Z)-(4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-L-valinate (116)

Compound (116) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of methyl L-valinate hydrochloride and 6 eq of TEA at $140^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: 13% (35 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.41$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.38 $(\mathrm{s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.39-7.86\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.48(\mathrm{~s}, 1 \mathrm{H}), 4.50-4.26(\mathrm{~m}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.16-0.80(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 359.2$. HPLC: 97\%.

Synthesis of methyl (2S)-2-(($(Z)-4$-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)amino)-3-hydroxybutanoate (117)

Compound (117) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of methyl ($2 S$)-2-amino-3-hydroxybutanoate hydrochloride and 6 eq of TEA at $140{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). The final product required a trituration in refluxing EtOH. Isolated yield: $26 \%(71 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.28\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.34$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 6.49 ($\mathrm{s}, 1 \mathrm{H}$), 5.31 (br s, $1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $4.66-4.49$ (m, $1 \mathrm{H}), 4.35-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$361.2. HPLC: $>98 \%$.

Synthesis of methyl (Z)-(4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-D-leucinate (118)

Compound (118) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of methyl D-leucinate hydrochloride and 4 eq DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 8 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: 69% (70 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.75\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$,
8.09 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.70-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 1.84-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.07-0.77(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$373.2. HPLC: $>98 \%$.

Synthesis of methyl (Z)-(4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-L-leucinate (119)

Compound (119) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of methyl L-leucinate hydrochloride and 6 eq TEA at $140{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $27 \%(75 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.75$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.70-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.07-$ $0.77(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$373.2. HPLC: 91\%.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-fluoro-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (120)

Compound (120) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-1-fluoro-4-methylpentan-2-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 72 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: $41 \%(25 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.28$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 1 \mathrm{H})$, $4.37-4.22(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.81(\mathrm{~m}$, 6H). MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$347.2. HPLC: 95\%.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-fluoro-4-methylpentan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (121)

Compound (121) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-1-fluoro-4-methylpentan-2-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 72 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: $41 \%(31 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.28$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 1 \mathrm{H})$, $4.37-4.22(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.81(\mathrm{~m}$, $6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$347.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-2-(((adamantan-1-yl)methyl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (122)

Compound (122) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 2 eq of (adamantan-1-yl)methanamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $68 \%(198 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.33$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.35 (s, $1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.38(\mathrm{~s}, 1 \mathrm{H}), 3.25-2.80(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.43(\mathrm{~m}, 12 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 393.3$. HPLC: >98\%.

Synthesis of $(\pm)-(Z)$-2-((1-(adamantan-1-yl)ethyl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (123)

Compound (123) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 2 eq of (\pm)-1-(adamantan-1-yl)ethan-1-amine hydrochloride and 3 eq of DIPEA at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH:

99/1 to $93 / 7$). The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $32 \%(97 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.22\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.39(\mathrm{~s}, 1 \mathrm{H}), 3.76-3.59(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.49(\mathrm{~m}, 12 \mathrm{H}), 1.17-$ $1.05(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$407.3. HPLC: $>98 \%$.

Synthesis of (Z)-2-((adamantan-2-yl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (124)

Compound (124) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of adamantan-2-amine and 15 eq of AcOH at $170{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $44 \%(125 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.06$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ e xchanged), $9.31(\mathrm{~s}, 1 \mathrm{H})$, $8.87(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.44 $(\mathrm{s}, 1 \mathrm{H}), 4.15-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.56(\mathrm{~m}, 14 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$379.2. HPLC: 93\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((5-hydroxyadamantan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (125)

Compound (125) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of trans-4-aminoadamantan-1-ol and 15 eq of AcOH at $160{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in refluxing EtOH. Isolated yield: 27\% (80 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.93$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.36 (s, $1 \mathrm{H}), 8.98-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.37-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.11-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.48\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.36\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.20-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.00$ $(\mathrm{m}, 3 \mathrm{H}), 1.97-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.32(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 395.2$. HPLC: >98\%.

Synthesis of methyl 2-(((Z)-4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)amino)adamantane-2-carboxylate (126)

Compound (126) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of methyl 2-aminoadamantane-2-carboxylate and 9 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 96h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$) then PTLC. Isolated yield: $<10 \% ~(9 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.91$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.70-$ $2.58(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.58(\mathrm{~m}, 8 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 437.0$. Purity : 85\% $\left({ }^{1} \mathrm{H}\right.$ NMR)

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(noradamantylamino)-3,5-dihydro-4H-imidazol-4-one (127)

Compound (127) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $545 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of 3-noradamantanamine hydrochloride and 8 eq of DIPEA at $140{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $46 \%(92 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.95$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.30 (s, $1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ $1.94(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$365.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3,5-dimethyladamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (128)

Compound (128) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of memantine and 15 eq of AcOH at $160^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h. Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required a trituration in EtOH at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $44 \%(132 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}, 300 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.04\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.02$ (s, 2H), 7.16 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.70(\mathrm{~m}, 6 \mathrm{H})$, $1.49-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 407.2$. HPLC: 97\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-hydroxyadamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (129)

Compound (129) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of 3-amino-1-adamantanol and 15 eq of AcOH at $160^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $59 \%(173 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.01$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.35 (s, $1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $2.28-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}$, $5 H), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.45(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}^{\left(\mathrm{ESI}^{+}\right)}:[\mathrm{M}+\mathrm{H}]^{+}$395.2. HPLC: 97\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-methoxyadamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (130)

Compound (130) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $331 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 2.5 eq of 3-methoxyadamantan-1-amine and 10 eq of AcOH at $140^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: 25% (34 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.08\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 9.35
(s, 1H), $9.04(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $\left.6.43(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.38-1.91(\mathrm{~m}, 8 \mathrm{H}), 1.83-1.47(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 409.3. HPLC: 96\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-fluoroadamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (131)

Compound (131) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $494 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of 3-fluoroadamantan-1-amine and 6 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: $54 \%(106 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.89$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.23-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 4 \mathrm{H})$, $1.67-1.53(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$397.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3,5,7-trifluoroadamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (132)

Compound (132) was synthesized according to GP11-B, in a dioxane/EtOH mixture (3/1, $0.3 \mathrm{M} /$ isothiourea), on a $158 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of 3,5,7-trifluoroadamantan-1amine and 6 eq of AcOH at $155^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in ACN at $0^{\circ} \mathrm{C}$. Isolated yield: 29% (20 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.12$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 9.15-8.77(\mathrm{~m}, 1 \mathrm{H}), 8.31-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.52(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.05(\mathrm{~m}, 12 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 433.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of 3-(($\boldsymbol{Z})$-4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1 \boldsymbol{H}-imidazol-2-yl)amino)adamantan-1-yl acetate (133)

Compound (133) was synthesized according to GP11-B, in a dioxane/EtOH mixture (3/1, $0.3 \mathrm{M} /$ isothiourea), on a $373 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 2.5 eq of 3 -aminoadamantan- 1 -yl acetate hydrochloride and 4 eq DIPEA at $140{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: 37% (60 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, 300 K) of major tautomer $\delta_{\mathrm{H}} 10.09$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.13$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{~s}$, 2H), $2.35-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H})$. MS $\left(E S I^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 437.3$. HPLC: 97\%.

Synthesis of 3-(((Z)-4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1 \mathbf{H}-imidazol-2-yl)amino)adamantan-1-yl pivalate (134)

Compound (134) was synthesized according to GP11-B, in a dioxane/EtOH mixture (8/2, $0.3 \mathrm{M} /$ isothiourea), on a $217 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 2.5 eq of 3 -aminoadamantan- 1 -yl pivalate hydrochloride and 4 eq DIPEA at $160^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required a reprecipitation from DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: 31% (32 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, 373 K) of major tautomer $\delta_{\mathrm{H}} 9.84\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.12$ (dd, $J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 2.68$ (s, 2H), $2.39-1.90(\mathrm{~m}, 10 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$479.4. HPLC: 98\%.

Synthesis of 3-(((Z)-4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1 \boldsymbol{H}-imidazol-2-yl)amino)adamantan-1-yl tert-butylcarbamate (135)

Compound (135) was synthesized according to GP11-B, in a dioxane/EtOH mixture (3/1, $0.3 \mathrm{M} /$ isothiourea), on a $472 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 2.5 eq of 3 -aminoadamantan- 1 -yl tert-butylcarbamate hydrochloride and 4 eq DIPEA at $160^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $17 \%(40 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.81$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.17$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 6.20$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $2.60(\mathrm{~s}, 1 \mathrm{H}), 2.40-1.93(\mathrm{~m}, 9 \mathrm{H}), 1.68-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.09$ (m, 9H). MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}$494.3. Purity : 92% (${ }^{1} \mathrm{H} N \mathrm{NR}$).

Synthesis of $\quad \mathrm{N}$-(3-(((Z)-4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1 H -imidazol-2-yl)amino)adamantan-1-yl)acetamide (136)

Compound (136) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of N-(3-aminoadamantan-1-yl)acetamide and 9 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. The final product required a trituration in EtOH. Isolated yield: $13 \%(15 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.87$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 6.99 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 6.43 ($\mathrm{s}, 1 \mathrm{H}$), $2.49-2.43$ (m, 2H), $2.35-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.10-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 436.2. HPLC: >98\%.

Synthesis of $\quad \mathrm{N}$-(3-(((Z)-4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1 H -imidazol-2-yl)amino)adamantan-1-yl)cyclopropanecarboxamide (137)

Compound (137) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of N-(3-aminoadamantan-1-yl)cyclopropanecarboxamide and 9 eq of AcOH at $150^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}$: 99/1 to 93/7). The final product required a trituration in EtOH. Isolated yield: 33\% (42 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.87$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 7.01 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.38-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.11-1.84(\mathrm{~m}, 6 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 3 \mathrm{H}), 0.75-0.44(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$462.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of N-(3-(((Z)-4-(benzo $[d]$ thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1 \boldsymbol{H}-imidazol-2-yl)amino)adamantan-1-yl)methanesulfonamide (138)

Compound (138) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of N-(3-aminoadamantan-1-yl)methanesulfonamide and 9 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 102 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in EtOH. Isolated yield: 47\% (61 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.90$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 6.93 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 6.43 ($\mathrm{s}, 1 \mathrm{H}$), 2.97 ($\mathrm{s}, 3 \mathrm{H}$), 2.43 (s , $2 H), 2.29-1.84(\mathrm{~m}, 10 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$472.1. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-(dimethylamino)adamantan-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (139)

Compound (139) was synthesized according to GP11-B, in dioxane (0.3 M /isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of N^{1}, N^{1}-dimethyladamantane-1,3-diamine and 9 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: $56 \%\left(64 \mathrm{mg}\right.$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.61$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 9.10-8.85(\mathrm{~m}, 1 \mathrm{H}), 8.26-8.06$ $(\mathrm{m}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 6.44 (s, 1H), 2.27 (s, 6H), 2.26 $-1.93(\mathrm{~m}, 8 \mathrm{H}), 1.79-1.53(\mathrm{~m}, 6 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 422.1$. HPLC: >98\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(benzylamino)-3,5-dihydro-4H-imidazol-4one (140)

Compound (140) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.38 mmol scale of intermediate (9.3), with 4 eq of benzylamine at $110^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: 80% (367 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.86(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.67-4.48(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+}$335.2. HPLC: 97%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3,4-dimethylbenzyl)amino)-3,5-dihydro-4H-imidazol-4-one (141)

Compound (141) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (3,4-dimethylphenyl)methanamine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3.5 h . The product directly precipitated in the reaction medium: it was isolated after
filtration, washing with cold THF, then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 59% (58 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.79\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.28-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.50$ $(\mathrm{s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$363.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2,4-dimethylbenzyl)amino)-3,5-dihydro-4H-imidazol-4-one (142)

Compound (142) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (2,4-dimethylphenyl)methanamine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3.5 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 67% (66 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.69\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.15 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.03(\mathrm{~m}$, $1 \mathrm{H}), 7.03-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 363.2. HPLC: $>98 \%$.

Synthesis of ($\boldsymbol{Z})$-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-(trifluoromethyl)benzyl)amino)-3,5-dihydro-4H-imidazol-4-one (143)

Compound (143) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (2-(trifluoromethyl)phenyl)methanamine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 72% (79 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.96$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.10-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.43$ $(\mathrm{m}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}) \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 403.1$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-(trifluoromethoxy)benzyl)amino)-3,5-dihydro-4H-imidazol-4-one (144)

Compound (144) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (2-(trifluoromethoxy)phenyl)methanamine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 5.5 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 59\% (67 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.93$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.14\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$419.2. HPLC: 98\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2,3-dihydro-1H-inden-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (145)

Compound (145) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of 2,3-dihydro- $1 H$-inden-2-amine hydrochloride and 3 eq of DIPEA at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: 72% (47 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.55\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.44-8.17(\mathrm{~m}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}$, $2 H), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.96-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.88(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 361.1. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1R,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (146)

Compound (146) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of $(1 R, 2 R)$-1-amino-2,3-dihydro- $1 H$-inden-2-ol at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 40 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $66 \%(68 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.18$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.27(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.27-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.01$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.39-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.55-$ $4.90\left(\mathrm{~m}, 1 \mathrm{H}+\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.49(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ $(\mathrm{dd}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 377.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(($(1 R, 2 R)$-2-hydroxy-2,3-dihydro-1H-inden-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (147)

Compound (147) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of $(1 S, 2 S)$-1-amino-2,3-dihydro- $1 H$-inden-2-ol at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 40 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $62 \%(64 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.18\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.27(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.27-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.01$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.39-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.55-$ $4.90\left(\mathrm{~m}, 1 \mathrm{H}+\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged $), 4.49(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ $(\mathrm{dd}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 377.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-hydroxy-1-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (148)

Compound (148) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-2-amino-2-phenylethan-1-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $23 \%(63 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.50\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 9.00-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.07$ - $7.97(\mathrm{~m}, 1 \mathrm{H}), 7.92\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.25-4.77\left(\mathrm{~m}, 1 \mathrm{H}+\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.75(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, 2H). MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$365.2. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-hydroxy-1-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (149)

Compound (149) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-2-amino-2-phenylethan-1-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $43 \%(117 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.50\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 9.00-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.07$ $-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.92\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.25-4.77\left(\mathrm{~m}, 1 \mathrm{H}+\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.75(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H})$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$365.2. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (R, Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-hydroxy-3-phenylpropan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (150)

Compound (150) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-2-amino-3-phenylpropan-1-ol at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $36 \%(37 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.45\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.38(\mathrm{~s}, 1 \mathrm{H}), 9.04-8.83(\mathrm{~m}, 1 \mathrm{H}), 8.31-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.05$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.42-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 1 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 5.33-4.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.30-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.11$ $-2.70(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$379.2. HPLC: $>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-hydroxy-2-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (151)

Compound (151) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (R)-2-amino-1-phenylethan-1-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $83 \%(83 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.57\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 9.05-8.80(\mathrm{~m}, 1 \mathrm{H}), 8.30-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.05$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.53-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $5.19-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$365.1. $\mathrm{HPLC}:>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-hydroxy-2-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (152)

Compound (152) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-2-amino-1-phenylethan-1-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $78 \%(77 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.57$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 9.05-8.80(\mathrm{~m}, 1 \mathrm{H}), 8.30-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.05$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.53-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $5.19-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$365.1. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-hydroxy-3-phenylpropyl)amino)-3,5-dihydro-4H-imidazol-4-one (153)

Compound (153) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-1-amino-3-phenylpropan-2-ol at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 2 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). The final product required a trituration in refluxing EtOH. Isolated yield: $58 \%(60 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.13$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.29(\mathrm{~s}, 1 \mathrm{H}), 8.75$ $-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.14-6.92(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 5.12-4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.12-3.86(\mathrm{~m}$, $1 \mathrm{H}), 3.54(\mathrm{dd}, J=13.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=13.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.72(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$379.2. HPLC: 98\%.

Synthesis of (\pm)-($\boldsymbol{Z})$-5-(benzo[d]thiazol-6-ylmethylene)-2-((cis-2-methoxy-2,3-dihydro-1H-inden-1-yl)amino)-3,5-dihydro-4H-imidazol-4-one (154)

Compound (154) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-cis-2-methoxy-2,3-dihydro- $1 H$-inden- 1 -amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 26h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 55% (59 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.22$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.44-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 1 H), 7.51 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $7.44-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.77-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.39$ $-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.01(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI $)$: $[\mathrm{M}+\mathrm{H}]^{+}$391.2. HPLC: >98\%.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((trans-2-methoxy-2,3-dihydro-1H-inden-1-yl)amino)-3,5-dihydro-4 H -imidazol-4-one (155)

Compound (155) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-trans-2-methoxy-2,3-dihydro- $1 H$-inden-1-amine hydrochloride and 4 eq of DIPEA at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 26h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 69% (74 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.73$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}$, 1 H), 8.23 (dd, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.12 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.60-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.33$ (m, 1H), 2.93-2.74 (m, 1H). MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}$391.2. HPLC: >98\%.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-methoxy-1-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (156)

Compound (155) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 12.71 mmol scale of intermediate (9.4), with 3 eq of (R)-2-methoxy-1-phenylethan-1-amine at $140{ }^{\circ} \mathrm{C}$ (sealable
round flask, heating block), for 26 . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required two successive triturations in refluxing EtOH. Isolated yield: 51\% (2.455 g). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.55$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.29-7.92\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.58$ $(\mathrm{m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 379.2$. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-methoxy-1-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (157)

Compound (157) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-2-methoxy-1-phenylethan-1-amine at $140^{\circ} \mathrm{C}$ (sealed tube, heating block), for 26 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. Isolated yield: $28 \%(78 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.55$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.34 (s, $1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.29-7.92\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$. MS (ESI ${ }^{+}$) : $[\mathrm{M}+\mathrm{H}]^{+}$379.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-(tert-butoxy)-1-phenylethyl)amino)-

 3,5-dihydro-4H-imidazol-4-one (158)

Compound (158) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $545 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 4 eq of (R)-2-(tert-butoxy)-1-phenylethan-1-amine and 2 eq of AcOH at $140{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: 22% (50 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.39\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.55-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.16$ $-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.58(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 421.3 . \mathrm{HPLC}: 95 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-methoxy-3-phenylpropan-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (159)

Compound (159) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-1-methoxy-3-phenylpropan-2-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a trituration in refluxing EtOH. Isolated yield: $55 \%(59 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.09$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.29 (s, $1 \mathrm{H}), 8.96-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.33-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.25-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.44(\mathrm{~m}$, 2H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.90(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$393.2. HPLC: 96\%.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-methoxy-2-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (160)

Compound (160) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-2-methoxy-2-phenylethan-1-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: 78% (80 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.57\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=8.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.53-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.45$ $(\mathrm{s}, 1 \mathrm{H}), 4.73-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$379.2. HPLC: 98\%.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-methoxy-3-phenylpropyl)amino)-3,5-dihydro-4H-imidazol-4-one (161)

Compound (161) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-2-methoxy-3-phenylpropan-1-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 61% (65 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.44$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.94-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.36-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.36-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.60$ - $3.41(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.78(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$393.2. HPLC: 96\%.

Synthesis of methyl (Z)-(4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-D-phenylalaninate (162)

Compound (162) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of methyl D-phenylalaninate hydrochloride and 6 eq of TEA at $140{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a reprecipitation from DCM/pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $19 \%(57 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.68$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.38(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $7.39-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.66(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.26-$ 3.09 (m, 2H). MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$407.1. HPLC: $>98 \%$.

Synthesis of methyl (Z)-(4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-L-phenylalaninate (163)

Compound (163) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of methyl L-phenylalaninate hydrochloride and 4 eq of DIPEA at
$120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 8 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in refluxing EtOH. Isolated yield: 65\% (72 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.68$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.38 (s, $1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.39-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.66(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.09(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI $\left.{ }^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$407.2. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-fluoro-1-phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one (164)

Compound (164) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-2-fluoro-1-phenylethan-1-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 96h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: 50% (53 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.76$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.45\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 8.19 $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.58-5.22(\mathrm{~m}, 1 \mathrm{H})$, $4.96-4.52(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$367.1. HPLC: 94\%.

Synthesis of (Z)-2-((2-amino-1-phenylethyl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-

 dihydro- $\mathbf{4 H}$-imidazol-4-one dihydrochloride (165)

Compound (165) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $363 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-tert-butyl (2-amino-2-phenylethyl)carbamate at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final compound was isolated after deprotection of Boc with HCl dioxane (4M) in THF at $70{ }^{\circ} \mathrm{C}$ and lyophilization. Isolated yield: $63 \%\left(107 \mathrm{mg}, 2\right.$ steps). Hygroscopic pale yellow foamy solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.38(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.14-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.53-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.45\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.50-3.37(\mathrm{~m}$, 1H), $3.34-3.22(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 364.1(+2 \mathrm{HCl}) . \mathrm{HPLC}:>98 \%$.

Note: attempt to run the final deprotection of Boc at r.t. will result in a mixture of mono- and bishydrochlorides.

Synthesis of (R,Z)-2-((2-amino-1-phenylethyl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one dihydrochloride (166)

Compound (166) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of tert-butyl (R)-(2-amino-2-phenylethyl)carbamate at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final compound was isolated after deprotection of Boc with HCl dioxane (4M) in THF at $70^{\circ} \mathrm{C}$ and lyophilization. Isolated yield: 72% ($121 \mathrm{mg}, 2$ steps). Hygroscopic pale yellow foamy solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.38(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.14-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.53-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.45\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.50-3.37(\mathrm{~m}$, $1 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 364.1(+2 \mathrm{HCl})$. HPLC: 98%.

Synthesis of (R,Z)-2-((2-amino-1-phenylethyl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one dihydrochloride (167)

Compound (167) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of tert-butyl (S)-(2-amino-2-phenylethyl)carbamate at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final compound was isolated after deprotection of Boc with HCl dioxane (4 M) in THF at $70^{\circ} \mathrm{C}$ and lyophilization. Isolated yield: 59% ($100 \mathrm{mg}, 2$ steps). Hygroscopic pale yellow foamy solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.38(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.14-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.53-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.45\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $3.50-3.37(\mathrm{~m}$, $1 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 364.1(+2 \mathrm{HCl})$. HPLC: 98%. phenylethyl)amino)-3,5-dihydro-4H-imidazol-4-one dihydrochloride (168)

Compound (168) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $363 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-tert-butyl (2-amino-2-phenylethyl)(methyl)carbamate at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final compound was isolated after deprotection of Boc with HCl dioxane $(4 \mathrm{M})$ in THF at $70{ }^{\circ} \mathrm{C}$ and lyophilization. Isolated yield: $54 \%(93 \mathrm{mg}, 2$ steps $)$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ $\left.+\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.43(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.66$ $(\mathrm{s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 378.2(+2 \mathrm{HCl}) . \mathrm{HPLC}: 84 \%($ mono-HCl$)+14 \%($ di-HCl $)$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-(dimethylamino)-1-phenylethyl)amino)-3,5-dihydro- $\mathbf{4 H}$-imidazol-4-one (169)

Compound (169) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of $(\pm)-N^{1}, N^{1}$-dimethyl-2-phenylethane-1,2-diamine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in EtOH. Isolated yield: $68 \%(72 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.56\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.86$ $-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.15-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.83\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.51-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.40$ $(\mathrm{s}, 1 \mathrm{H}), 5.17-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=12.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 392.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((pyridin-2-ylmethyl)amino)-3,5-dihydro-4H-imidazol-4-one (170)

Compound (170) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of pyridin-2-ylmethanamine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 76% (46 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.84$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.34-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.72-4.48(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 336.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((pyridin-3-ylmethyl)amino)-3,5-dihydro-4H-imidazol-4-one (171)

Compound (171) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of pyridin-3-ylmethanamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH at 0 ${ }^{\circ} \mathrm{C}$. Isolated yield: 72% (181 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.95\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.73-8.57(\mathrm{~m}$, $1 \mathrm{H}), 8.47(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.30-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.15\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 8.03 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.72-4.48(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}: 336.2$. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((pyridin-4-ylmethyl)amino)-3,5-dihydro-4H-imidazol-4-one (172)

Compound (172) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of pyridin-4-ylmethanamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was isolated after
filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH at 0 ${ }^{\circ} \mathrm{C}$. Isolated yield: $55 \%(137 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.04\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.72-4.54(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}: 336.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-(pyridin-2-yl)ethyl)amino)-3,5-dihydro-4H-imidazol-4-one (173)

Compound (173) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of 2-(pyridin-2-yl)ethan-1-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3.5 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 77% (73 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{td}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged verifier), $7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.68(\mathrm{~m}, 2 \mathrm{H})$, $3.16-3.03(\mathrm{~m}, 2 \mathrm{H})$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 350.1$. HPLC: 95\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((5-methylpyrazin-2-yl)methyl)amino)-3,5-dihydro-4H-imidazol-4-one (174)

Compound (174) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $145 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (5-methylpyrazin-2-yl)methanamine at $80{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 16h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 47\% $(24 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- $d_{4}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.24(\mathrm{~s}, 1 \mathrm{H})$, $8.89-8.56(\mathrm{~m}, 2 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.22-7.78(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}$ (ESI^{+}) : $[\mathrm{M}+\mathrm{H}]^{+}$351.2. HPLC: 97\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((5-methylfuran-2-yl)methyl)amino)-3,5-dihydro-4H-imidazol-4-one (175)

Compound (175) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (5-methylfuran-2-yl)methanamine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 5 h. Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: 59% (36 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.77$ (br s, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.99 (br s, 1H, NH, D $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=3.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$339.2. HPLC: $>98 \%$.

Synthesis of (Z)-2-((3-(1H-imidazol-1-yl)propyl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (176)

Compound (176) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of 3-(1H-imidazol-1-yl)propan-1-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 2 h . Purification by FC (elution: DCM/MeOH ($7 \mathrm{~N} \mathrm{NH}_{3}$): 99/1 to 93/7). Isolated yield: $77 \%(75 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.86$ (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.86-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $7.26(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$, $4.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 353.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((4-methylthiazol-2-yl)methyl)amino)-3,5-dihydro-4H-imidazol-4-one (177)

Compound (177) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (4-methylthiazol-2-yl)methanamine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required a trituration in refluxing EtOH. Isolated yield: 40\% (26 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.01$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.88$
$(\mathrm{s}, 1 \mathrm{H}), 8.33\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $(\mathrm{s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$356.2. HPLC: $>98 \%$.

Synthesis of (Z)-2-((benzo[d]thiazol-2-ylmethyl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (178)

Compound (178) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of benzo[d thiazol-2-ylmethanamine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required two successive triturations: one in refluxing EtOH and the other in refluxing MeOH . Isolated yield: $94 \% ~\left(100 \mathrm{mg}\right.$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.13\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.12-4.91(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 392.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((tetrahydro-2H-pyran-4-yl)methyl)amino)-3,5-dihydro-4H-imidazol-4-one (179)

Compound (179) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (tetrahydro-2H-pyran-4-yl)methanamine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 51% (32 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.64$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.36-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.11(\mathrm{~m}, 3 \mathrm{H}), 2.03-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.10(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 343.3$. HPLC: 97%. yl)amino)-3,5-dihydro-4H-imidazol-4-one (180)

Compound (180) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $540 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of 7-methyl-7-azaspiro[3.5]nonan-2-amine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH ($7 \mathrm{~N} \mathrm{NH}_{3}$): 99/1 to 93/7). Isolated yield: $17 \%(35 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.22\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.93-8.64(\mathrm{~m}, 1 \mathrm{H}), 8.33-8.09(\mathrm{~m}, 1 \mathrm{H}+\mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.45-4.14(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.11$ $(\mathrm{s}, 3 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.45(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$382.3. HPLC : 90\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(((1-methylpiperidin-4-yl)methyl)amino)-

 3,5-dihydro-4H-imidazol-4-one (181)

Compound (181) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $919 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 4 eq of (1-methylpiperidin-4-yl)methanamine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH ($7 \mathrm{~N} \mathrm{NH}_{3}$): 99/1 to 93/7). Isolated yield: 30% (99 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- $d_{4}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.24$ $(\mathrm{s}, 1 \mathrm{H}), 8.81-7.74(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.42(\mathrm{~m}$, $5 \mathrm{H}), 2.09-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.38(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$356.2. HPLC : 92\%.

Synthesis of tert-butyl (Z)-4-(((4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-

 imidazol-2-yl)amino)methyl)piperidine-1-carboxylate (182)

Compound (182) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of tert-butyl 4-(aminomethyl)piperidine-1-carboxylate at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3.5 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: $50 \%(60 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.64\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.38-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.15-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.01(\mathrm{~m}$,
$2 \mathrm{H}), 2.90-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.19-0.94(\mathrm{~m}, 2 \mathrm{H}) . . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 442.3. HPLC: >98\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(phenylamino)-3,5-dihydro-4H-imidazol-4one (183)

Compound (183) was synthesized according to GP11-A, in THF ($1 \mathrm{M} /$ isothiourea), on a $873 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 10 eq of aniline at $150^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 1.5 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: $64 \%(178 \mathrm{mg})$. Beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) $\delta_{\mathrm{H}} 10.79$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.94\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.41(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 321.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((4-hexylphenyl)amino)-3,5-dihydro-4H-imidazol-4-one (184)

Compound (184) was synthesized according to GP11-A, in THF ($1 \mathrm{M} /$ isothiourea), on a 1.05 mmol scale of intermediate (9.3), with 10 eq of 4-hexylaniline at $170^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 2 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 43% (183 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.76$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.85\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.41(\mathrm{~s}, 1 \mathrm{H})$, $8.85(\mathrm{~s}, 1 \mathrm{H}), 8.49-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.22-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.63$ (s, 1H), $\left.2.67-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 405.3. HPLC: >98\%.

[^3]

Compound (185) was synthesized according to GP11-A, in THF ($0.2 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 4-fluoroaniline at $150^{\circ} \mathrm{C}$ (sealed tube, heating block), for 4 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH, filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH . Isolated yield: $57 \%(35 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.87$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.97\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.41(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}$, $1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.65(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$339.1. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-fluoro-4-methylphenyl)amino)-3,5-dihydro-4H-imidazol-4-one (186)

Compound (186) was synthesized according to GP11-A, in THF ($0.2 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 3-fluoro-4-methylaniline at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 4 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: 69\% (44 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $10.08\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.42(\mathrm{~s}, 1 \mathrm{H})$, $8.95(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 353.1$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-(trifluoromethyl)phenyl)amino)-3,5-dihydro-4H-imidazol-4-one (187)

Compound (187) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 3-(trifluoromethyl)aniline at $200^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 6 h. Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). Isolated yield: $33 \%(23 \mathrm{mg}$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.02\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $10.34\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.42(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$389.1. HPLC: 95\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-(difluoromethoxy)phenyl)amino)-3,5-dihydro-4H-imidazol-4-one (188)

Compound (188) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $254 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 3-(difluoromethoxy)aniline at $200^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 4 h . Purification by FC (elution: DCM/MeOH: $99 / 1$ to $93 / 7$). Isolated yield: $36 \%(35 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.87$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.19 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.42(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.27(\mathrm{~m}, 1 \mathrm{H})$, $8.17(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$387.1. HPLC: 96%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2,3-dihydro-1H-inden-5-yl)amino)-3,5-dihydro-4H-imidazol-4-one (189)

Compound (189) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 2,3-dihydro- $1 H$-inden-5-amine at $150{ }^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$

Anton Paar), for 2 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: 76\% (50 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.72$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.83 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.40 $(\mathrm{s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.08$ (p, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 361.1$. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (Z)-2-((1-acetylindolin-6-yl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (190)

Compound (190) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 1-(6-aminoindolin-1-yl)ethan-1-one at $200{ }^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 6 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 44% (32 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-$ $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.57$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.89 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.39(\mathrm{~s}, 1 \mathrm{H}), 9.27-9.00(\mathrm{~m}, 2 \mathrm{H}), 8.32-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H})$, $4.31-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 404.2$. HPLC: 98\%.

Synthesis of (Z)-5-(benzo[d/thiazol-6-ylmethylene)-2-((1-methyl-1H-indazol-7-yl)amino)-3,5-dihydro-4H-imidazol-4-one (191)

Compound (191) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 1-methyl- $1 H$-indazol- 7 -amine and 15 eq of AcOH at $130^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 5 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH . Isolated yield: 52% (36 mg). Yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.21\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $10.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$,
$\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.39(\mathrm{~s}, 1 \mathrm{H}), 8.74-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.16-7.91(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.27-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$375.1. HPLC: 97\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((4-(4-methylpiperazin-1-yl)phenyl)amino)-3,5-dihydro-4H-imidazol-4-one (192)

Compound (192) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $831 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of 4-(4-methylpiperazin-1-yl)aniline at $150{ }^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 2 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required two successive triturations in EtOH. Isolated yield: 65\% (225 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.73$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.73 (br s, $1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.39(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.77(\mathrm{~m}, 1 \mathrm{H}), 8.43-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.23$ (s, 3H). MS (ESI ${ }^{+}$) : $[\mathrm{M}+\mathrm{H}]^{+}$419.2. HPLC: 97\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((4-morpholinophenyl)amino)-3,5-dihydro-4H-imidazol-4-one (193)

Compound (193) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of 4-morpholinoaniline at $150{ }^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 2 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: 90% (66 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.72$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.73 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.39(\mathrm{~s}, 1 \mathrm{H})$, $8.83(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 406.2$. HPLC: 98\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(pyridin-3-ylamino)-3,5-dihydro-4H-imidazol-4-one (194)

Compound (193) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of pyridin-3-amine and 15 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 2 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: 87% (51 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.03$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.16 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.42(\mathrm{~s}, 1 \mathrm{H}), 9.06-8.90(\mathrm{~m}, 1 \mathrm{H}), 8.87-8.78(\mathrm{~m}, 1 \mathrm{H}), 8.44-8.21(\mathrm{~m}, 3 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$322.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(pyridin-2-ylamino)-3,5-dihydro-4H-imidazol-4-one (195)

Compound (195) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.04 mmol scale of intermediate (9.3), with 5 eq of pyridin-2-amine at $220^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 2 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH . Isolated yield: 9% (31 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer δ_{H} 11.20 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.97 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.43(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}$, $1 \mathrm{H}), 8.49-8.26(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.23$ $-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$322.2. HPLC: 96\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-methoxy-6-methylpyridin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (196)

Compound (196) was synthesized according to GP11-A, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 182 $\mu \mathrm{mol}$ scale of intermediate (9.4), with 5 eq of 2-methoxy-6-methylpyridin-3-amine and 15 eq of AcOH at $130{ }^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 1.5 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: $16 \%(11 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.30$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.42(\mathrm{~s}, 1 \mathrm{H}), 9.06\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.90-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.72-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.44-$ $8.23(\mathrm{~m}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, 3H). MS (ESI ${ }^{+}$: $[\mathrm{M}+\mathrm{H}]^{+}$366.2. HPLC: 98\%.

Synthesis of (Z)-5-(benzo[d] thiazol-6-ylmethylene)-2-(pyrimidin-2-ylamino)-3,5-dihydro-4H-imidazol-4-one (197)

Compound (197) was synthesized according to GP11-A, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 873 $\mu \mathrm{mol}$ scale of intermediate (9.3), with 5 eq of pyrimidin- 2 -amine at $220{ }^{\circ} \mathrm{C}$ (sealed tube, $\mu \mathrm{w}$ Anton Paar), for 2 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in refluxing EtOH. Isolated yield: 8% (23 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.56$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 11.37 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.44(\mathrm{~s}, 1 \mathrm{H}), 9.12-8.84(\mathrm{~m}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.42-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 323.2$. HPLC: 98%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(pyrimidin-5-ylamino)-3,5-dihydro-4H-imidazol-4-one (198)

Compound (198) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $363 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of pyrimidin-5-amine and 15 eq of AcOH at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 16 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: $76 \%\left(89 \mathrm{mg}\right.$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.30$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.37 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.42(\mathrm{~s}, 1 \mathrm{H}), 9.41-9.02(\mathrm{~m}, 2 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.69(\mathrm{~m}, 1 \mathrm{H}), 8.45-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.49(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 323.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((5-(4-methylpiperazin-1-yl)pyrimidin-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (199)

Compound (199) was synthesized according to GP11-A, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 272 μ mol scale of intermediate (9.4), with 5 eq of 5-(4-methylpiperazin-1-yl)pyrimidin-2-amine and 15 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 96 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: 49\% (57 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.00$ (br s, $2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 2 \mathrm{H}), 8.25-7.98(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.26-3.17(\mathrm{~m}, 4 \mathrm{H}), 2.54-$ $2.51(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$421.2. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-(4-methylpiperazin-1-yl)pyrimidin-5-yl)amino)-3,5-dihydro-4 H -imidazol-4-one (200)

Compound (200) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 2-(4-methylpiperazin-1-yl)pyrimidin-5-amine and 15 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 1.5 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}(7 \mathrm{~N}$ NH_{3}): 99/1 to 93/7). Isolated yield: 61\% (70 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.12$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.79 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 9.39
$(\mathrm{s}, 1 \mathrm{H}), 8.93-8.52(\mathrm{~m}, 3 \mathrm{H}), 8.32-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.65$ $(\mathrm{m}, 4 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 421.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((5-(4-methylpiperazin-1-yl)pyrazin-2-yl)amino)-3,5-dihydro-4H-imidazol-4-one (201)

Compound (201) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 5 eq of 5-(4-methylpiperazin-1-yl)pyrazin-2-amine and 15 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 4 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}(7 \mathrm{~N}$ NH_{3}): 99/1 to 93/7). The final product required a trituration in EtOH. Isolated yield: $43 \%(49 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 11.35$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 10.82 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.42(\mathrm{~s}, 1 \mathrm{H}), 9.01-7.83(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H})$, $3.60-3.44(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 421.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-methyl-1H-pyrazol-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (202)

Compound (202) was synthesized according to GP11-A, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 182 $\mu \mathrm{mol}$ scale of intermediate (9.4), with 5 eq of 1-methyl-1 H-pyrazol-3-amine at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 3 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: 71\% (42 mg). Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 300 K) of major tautomer $\delta_{\mathrm{H}} 10.58\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.40(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.48-$ $8.03(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.63(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.49-6.23(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}^{\left(\mathrm{ESI}^{+}\right)}:$ $[\mathrm{M}+\mathrm{H}]^{+}$325.1. HPLC: $>98 \%$.

Synthesis of (Z)-2-((1,3,4-thiadiazol-2-yl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (203)

Compound (203) was synthesized according to GP11-A, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 182 μ mol scale of intermediate (9.4), with 5 eq of 1,3,4-thiadiazol-2-amine and 15 eq of AcOH at $150{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 9 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required two successive trituration in refluxing EtOH. Isolated yield: 35% (21 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 12.52$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 11.38 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.44(\mathrm{~s}, 1 \mathrm{H}), 9.18-9.03(\mathrm{~m}, 1 \mathrm{H}), 8.87-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.53-8.24$ $(\mathrm{m}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 329.2$. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(oxetan-3-ylamino)-3,5-dihydro-4H-imidazol-4-one (204)

Compound (204) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of oxetan-3-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: 59\% (48 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.92$ (br s, $1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.44\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $8.31-8.16$ $(\mathrm{m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.19-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.54$ (m, 2H). MS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+}$301.1. HPLC: >98\%.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((tetrahydrofuran-3-yl)amino)-3,5-dihydro-4 H -imidazol-4-one (205)

Compound (205) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.04 mmol scale of intermediate (9.3), with 4 eq of (R)-tetrahydrofuran-3-amine at $110^{\circ} \mathrm{C}$ (sealed tube, heating
block), for 12 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $34 \%(112 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.71$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.81$ $(\mathrm{s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.44 $(\mathrm{s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 1 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 315.2$. HPLC: $>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((tetrahydrofuran-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (206)

Compound (206) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-tetrahydrofuran-3-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0{ }^{\circ} \mathrm{C}$. Isolated yield: $62 \%(153 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.71$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.81$ $(\mathrm{s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.44 $(\mathrm{s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 1 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 315.2$. HPLC: $>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((tetrahydro-2H-pyran-4-yl)amino)-3,5-dihydro-4H-imidazol-4-one (207)

Compound (207) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $182 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of tetrahydro- 2 H -pyran-4-amine at $100^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 70% (42 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.68\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.21-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.55-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.79(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.50(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$329.2. HPLC: 95\%.

Synthesis of (R,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((tetrahydro-2H-pyran-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (208)

Compound (208) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.04 mmol scale of intermediate ($\mathbf{9 . 3}$), with 4 eq of (R)-tetrahydro- $2 H$-pyran-3-amine hydrochloride and 6 eq of TEA at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$). The final product required a reprecipitation from $\mathrm{DCM} /$ pentane at $0^{\circ} \mathrm{C}$. Isolated yield: 60% (203 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.45$ (br s, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.18-3.36(\mathrm{~m}, 5 \mathrm{H}), 2.09-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.46(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$329.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((tetrahydro-2H-pyran-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (209)

Compound (209) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 7.53 mmol scale of intermediate (9.4), with 2.5 eq of (S)-tetrahydro-2H-pyran-3-amine hydrochloride and 6 eq of DIPEA at $130{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $92 / 8$). The final product required a reprecipitation from $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O} /$ pentane at 0 ${ }^{\circ} \mathrm{C}$. Isolated yield: $68 \%\left(1.672 \mathrm{~g}\right.$). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.45\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.18-3.36(\mathrm{~m}, 5 \mathrm{H}), 2.09-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.81-1.46(\mathrm{~m}, 3 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 329.3 \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((6,6-dimethyltetrahydro-2H-pyran-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (210)

Compound (210) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $261 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-6,6-dimethyltetrahydro-2H-pyran-3-amine at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24h. Purification by FC (elution: DCM/MeOH: 99/1 to 92/8). Isolated yield: $70 \%(65 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.20$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.89-8.64(\mathrm{~m}, 1 \mathrm{H}), 8.33-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.49(\mathrm{~m}$, $1 \mathrm{H}), 2.01-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$357.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(($(3 R, 4 R)$-4-hydroxytetrahydro-2H-pyran-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (211)

Compound (211) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 2.73 mmol scale of intermediate (9.4), with 2.5 eq of ($3 R, 4 R$)-3-aminotetrahydro- $2 H$-pyran-4-ol at $135^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was evaporated to dryness and triturated twice in MeOH at $0^{\circ} \mathrm{C}$. Isolated yield: 54% (512 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.12$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.89-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.34-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 4.96\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.01(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$345.2. HPLC: 97\%.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(($3 S, 4 S$)-4-hydroxytetrahydro-2H-pyran-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (212)

Compound (212) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $508 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 2.5 eq of $(3 S, 4 S)$-3-aminotetrahydro- $2 H$-pyran- 4 -ol at $135{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . The product directly precipitated in the reaction medium: it was evaporated to dryness and triturated twice in MeOH at $0^{\circ} \mathrm{C}$. Isolated yield: $58 \%(101 \mathrm{mg})$. Yellow
solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.12$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.89-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.34-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 4.96\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $4.01(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 345.2$. HPLC: $>98 \%$.

Synthesis of (土)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(oxepan-3-ylamino)-3,5-dihydro-4H-imidazol-4-one (213)

Compound (213) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 1.2 eq of (\pm)-oxepan-3-amine at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 16 h (35% conv.). Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$ to $92 / 8$). Isolated yield: 33% (31 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.32-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.53(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.50(\mathrm{~m}, 6 \mathrm{H})$. MS (ESI^{+}) : $[\mathrm{M}+\mathrm{H}]^{+}$343.2. $\mathrm{HPLC}:>98 \%$.

Synthesis of (Z)-2-((1,4-dioxepan-6-yl)amino)-5-(benzo[d]thiazol-6-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (214)

Compound (214) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea) , on a $520 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 2.5 eq of 1,4-dioxepan-6-amine hydrochloride and 6 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). The final product required two successive triturations in MeOH . Isolated yield: $60 \%(107 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 343 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.41$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.97-8.65(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.71-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.29(\mathrm{~m}$, $4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$345.2. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-methylpiperidin-4-yl)amino)-3,5-dihydro-4H-imidazol-4-one (215)

Compound (215) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $864 \mu \mathrm{~mol}$ scale of intermediate (9.3), with 3 eq of 1-methylpiperidin-4-amine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}\left(7 \mathrm{~N} \mathrm{NH}_{3}\right)$: $99 / 1$ to $93 / 7$). Isolated yield: $51 \%(150 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 9.74$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.82-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.36-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.40(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.16$ $(\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$342.2. HPLC: 96\%.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-methylpiperidin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (216)

Compound (216) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a 1.48 mmol scale of intermediate (9.3), with 2 eq of (\pm)-1-methylpiperidin-3-amine at $110{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 12 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}\left(7 \mathrm{~N} \mathrm{NH}_{3}\right): 99 / 1$ to $93 / 7$). Isolated yield: 39% (197 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.59$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.43-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.68 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.40-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.15-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.47-$ $2.28(\mathrm{~m}, 3 \mathrm{H}), 1.94-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 342.2 . \mathrm{HPLC}:>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((tetrahydro-2H-thiopyran-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (217)

Compound (217) was synthesized according to GP11-B, in a THF/EtOH mixture ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-tetrahydro- $2 H$-thiopyran-3-amine hydrochloride and 4 eq of DIPEA at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to 93/7). Isolated yield: 76\% (91 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 373 \mathrm{~K}\right)$ of major tautomer $\delta_{\mathrm{H}} 10.20\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.29(\mathrm{~s}, 1 \mathrm{H}), 8.95-$ $8.61(\mathrm{~m}, 1 \mathrm{H}), 8.36-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 6.46 $(\mathrm{s}, 1 \mathrm{H}), 4.16-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=13.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 2 \mathrm{H})$, $2.16-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$345.1. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((2-oxopyrrolidin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (218)

Compound (218) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3-aminopyrrolidin-2-one at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: $80 \%(71 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.90-8.70(\mathrm{~m}, 1 \mathrm{H}), 8.34-8.16(\mathrm{~m}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), 7.71 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.04$ (m, 1H). MS (ESI $):[\mathrm{M}+\mathrm{H}]^{+}$328.1. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((4,4-dimethyl-2-oxopyrrolidin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (219)

Compound (219) was synthesized according to GP11-B, in a THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3-amino-4,4-dimethylpyrrolidin-2-one at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24h. Purification by FC (elution: DCM/MeOH: 99/1 to 93/7) then PTLC. Isolated yield: 63% (59 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.51\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 9.00-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.32-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.02$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 7.65 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 6.47 (s , $1 \mathrm{H}), 4.62-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$356.1. $\mathrm{HPLC}: ~>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((3-methyl-2-oxopyrrolidin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (220)

Compound (220) was synthesized according to GP11-B, in a dioxane ($0.3 \mathrm{M} /$ isothiourea), on a 272 $\mu \mathrm{mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3-amino-3-methylpyrrolidin-2-one and 9 eq of AcOH at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH: 99/1 to $93 / 7$) then PTLC. Isolated yield: $51 \%(43 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.10\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.35(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.05 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), 7.33 (br s, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchanged), $6.48(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=12.8$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H})$. MS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 342.1$. HPLC: $>98 \%$.

Synthesis of (\pm)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1-methyl-2-oxopyrrolidin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (221)

Compound (221) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3-amino-1-methylpyrrolidin-2-one at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 20 h . The product directly precipitated in the reaction medium: it was isolated after dilution with EtOH , filtration, washing with cold EtOH , then pentane. The final product required a trituration in EtOH. Isolated yield: $56 \%(52 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.72$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.43(\mathrm{~m}$, $\left.1 \mathrm{H}), 3.48-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$ 342.2. HPLC: $>98 \%$.

Synthesis of (R)- or (S)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1,3-dimethyl-2-oxopyrrolidin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (222) (ENANTIOMER 1*)

Compound (222) and (223) required the initial synthesis of the racemic compound. Synthesis of racemic compound: reaction was carried out according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3-amino-1,3-dimethylpyrrolidin-2-one and 9 eq of AcOH at $120^{\circ} \mathrm{C}$ (sealed tube, heating block), for 46 h (75% conv.). Purification by FC (elution: DCM/MeOH: 99/1 to 9/1). Isolated yield: 25% (24 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, 300 K) of major tautomer $\delta_{\mathrm{H}} 10.33\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.37(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{dd}$, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.46(\mathrm{~s}, 1 \mathrm{H}), 3.56$ $-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$ $[\mathrm{M}+\mathrm{H}]^{+}$356.2. $\mathrm{HPLC}:>98 \%$.

Preparative chiral SFC from racemic compound ($177 \mathbf{m g}$): Lux A1 ($21.2 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mathrm{um}$), $\left(40{ }^{\circ} \mathrm{C}, 50 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 1000 \mu \mathrm{~L}(19 \mathrm{mg}\right.$ in MeOH$) /$ injection; isocratic conditions: $4 / 6$ $\left(\mathrm{MeOH} / \mathrm{CO}_{2}\right)$. Isolated quantity of enantiomer (222): $62 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR of (222) was identical to racemate.

Analytical chiral SFC of racemic mixture: Amy-C (4.6 mm x $250 \mathrm{~mm}, 5 \mathrm{um}),\left(40^{\circ} \mathrm{C}, 4 \mathrm{~mL} / \mathrm{min}\right.$, 210-400 nm, $\mathrm{V}_{\text {injection }}: 1 \mu \mathrm{~L}$; isocratic conditions: $4 / 6\left(\mathrm{MeOH} / \mathrm{CO}_{2}\left(0.2 \% \mathrm{v} / \mathrm{v} \mathrm{NH}_{3}\right)\right), t_{\mathrm{R}}(\mathbf{2 2 2}): 1.95 \mathrm{~min}$, t_{R} (223): 2.53 min .

Analytical chiral SFC of (222) (conditions as described above):): $t_{\mathrm{R}}(\mathbf{2 2 2})$ after chiral purification: 1.96 min , ee $=>99 \%$ (first eluting enantiomer).

HPLC: $>98 \%$.

* The absolute configuration of the chiral center of (222) could not be assigned.

Synthesis of (R)- or (S)-(Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-((1,3-dimethyl-2-oxopyrrolidin-3-yl)amino)-3,5-dihydro-4H-imidazol-4-one (223) (ENANTIOMER 2*)

Preparative chiral SFC from racemic compound (177 mg): Lux A1 ($21.2 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mathrm{um}$), $\left(40^{\circ} \mathrm{C}, 50 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{~V}_{\text {injection }}: 1000 \mu \mathrm{~L}(19 \mathrm{mg}\right.$ in MeOH$) /$ injection; isocratic conditions: $4 / 6$ $\left(\mathrm{MeOH} / \mathrm{CO}_{2}\right)$. Isolated quantity of enantiomer (223): $67 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR of (223) was identical to racemate and (222)
Analytical chiral SFC of racemic mixture: Amy-C (4.6 mm x $250 \mathrm{~mm}, 5 \mathrm{um})$, $\left(40^{\circ} \mathrm{C}, 4 \mathrm{~mL} / \mathrm{min}\right.$, 210-400 nm, $\mathrm{V}_{\text {injection }}: 1 \mu \mathrm{~L}$; isocratic conditions: $4 / 6\left(\mathrm{MeOH} / \mathrm{CO}_{2}\left(0.2 \% \mathrm{v} / \mathrm{v} \mathrm{NH} \mathrm{N}_{3}\right)\right), t_{\mathrm{R}}(\mathbf{2 2 2}): 1.95 \mathrm{~min}$, $t_{\mathrm{R}}(\mathbf{2 2 3}): 2.53 \mathrm{~min}$.

Analytical chiral SFC of (79) (conditions as described above): $t_{\mathrm{R}}(\mathbf{2 2 3})$ after chiral purification: 2.51 \min, ee $=>99 \%$ (second eluting enantiomer).

HPLC: $>98 \%$.

* The absolute configuration of the chiral center of (223) could not be assigned.

Synthesis of $(\pm)-(Z)-3-((4-(b e n z o[d]$ thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1 H-imidazol-2-yl)amino)piperidin-2-one (224)

Compound (224) was synthesized according to GP11-A, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $272 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3-aminopiperidin-2-one at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . The product directly precipitated in the reaction medium: it was isolated after filtration, washing with cold THF, then pentane. The final product required a trituration in EtOH. Isolated yield: $73 \%(68 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.75\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J$
$=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.12(\mathrm{~m}$, $2 \mathrm{H}), 2.30-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+}$342.2. HPLC: $>98 \%$.

Synthesis of $(\pm)-(Z)-3-((4-(b e n z o[d]$ thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)amino)-1-methylpiperidin-2-one (225)

Compound (225) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $520 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (\pm)-3-amino-1-methylpiperidin-2-one at $120{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 24 h . Purification by FC (elution: DCM/MeOH: 99/1 to $9 / 1$). Isolated yield: 80% (77 mg). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 323 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.65$ (br s, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.70(\mathrm{~m}, 1 \mathrm{H}), 8.34-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $6.45(\mathrm{~s}, 1 \mathrm{H}), 4.41-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}$, $3 H), 2.35-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.86(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 356.1 . \mathrm{HPLC}:>98 \%$.

Synthesis of (S,Z)-5-((4-(benzo[d]thiazol-6-ylmethylene)-5-oxo-4,5-dihydro-1H-imidazol-2-yl)amino)piperidin-2-one (226)

Compound (226) was synthesized according to GP11-B, in THF ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-5-aminopiperidin-2-one and 4eq of DIPEA at $170{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH $\left(7 \mathrm{~N} \mathrm{NH}_{3}\right): 99 / 1$ to $85 / 15)$. The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $48 \%(122 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.76$ (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.40-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.09-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$ exchanged), 7.52 (br s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.38-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.36-1.78(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 342.2$. $\mathrm{HPLC}:>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(quinuclidin-3-ylamino)-3,5-dihydro-4H-imidazol-4-one (227)

Compound (227) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-quinuclidin-3-amine dihydrochloride and 10 eq of DIPEA at $170{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: $\mathrm{DCM} / \mathrm{MeOH}\left(7 \mathrm{~N} \mathrm{NH}_{3}\right)$: $9 / 1$ to $7 / 3$). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $11 \%(28 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.52\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.33-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.47(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.18-2.81(\mathrm{~m}$, $5 H), 2.23-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.53(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 354.2$. HPLC: $>98 \%$.

Synthesis of (S,Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(quinuclidin-3-ylamino)-3,5-dihydro-4H-imidazol-4-one (228)

Compound (228) was synthesized according to GP11-B, in dioxane ($0.3 \mathrm{M} /$ isothiourea), on a $746 \mu \mathrm{~mol}$ scale of intermediate (9.4), with 3 eq of (S)-quinuclidin-3-amine dihydrochloride and 10 eq of DIPEA at $170{ }^{\circ} \mathrm{C}$ (sealed tube, heating block), for 48 h . Purification by FC (elution: DCM/MeOH $\left(7 \mathrm{~N} \mathrm{NH}_{3}\right)$: $9 / 1$ to $7 / 3$). The final product required a trituration in EtOH at $0^{\circ} \mathrm{C}$. Isolated yield: $11 \%(28 \mathrm{mg})$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}$) of major tautomer $\delta_{\mathrm{H}} 10.52\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchanged), $9.31(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.33-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchanged), $6.47(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.18-2.81(\mathrm{~m}$, $5 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.53(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):[\mathrm{M}+\mathrm{H}]^{+} 354.2$. HPLC: 97\%.

8 Selected examples of NMR spectra and HPLC's of intermediate and final compounds

Selected examples of ${ }^{1} \mathbf{H}$ NMR $+{ }^{13} \mathbf{C}$ of intermediate compounds from GP1

Selected examples of ${ }^{1} \mathrm{H}$ NMR $+{ }^{13} \mathrm{C}$ of intermediate compounds from GP2

[^4]

Selected examples of ${ }^{1} \mathrm{H}$ NMR $+{ }^{13} \mathrm{C}$ of intermediate compounds from GP3

Selected examples of ${ }^{1} \mathrm{H}$ NMR $+{ }^{13} \mathrm{C}$ of intermediate compounds from GP4

nすN~NOM

[^5](5.3)

Abstract

F	จั	๑\% ¢ m	
¢	$\stackrel{\text { ¢ }}{\text { d }}$		
\|			/ \1

Selected examples of ${ }^{1} \mathrm{H}$ NMR $+{ }^{13} \mathrm{C}$ of intermediate compounds from GP5

							-	$\begin{aligned} & \text { Ti } \\ & \underset{\sim}{\circ} \end{aligned}$		$\underset{\sim}{\text { Ti }}$		$\xrightarrow{7}$	-											
12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	$\begin{gathered} 6.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

$\stackrel{0}{n}$

[^6]

Selected examples of ${ }^{1} \mathrm{H}$ NMR $+{ }^{13} \mathrm{C}$ of intermediate compounds from GP6 and GP7

\qquad

[^7]

Selected examples of ${ }^{1} \mathrm{H}$ NMR $+{ }^{13} \mathrm{C}$ of intermediate compounds from GP8

| 14.0 | 13.5 | 13.0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

m	\cdots	$\stackrel{\infty}{\circ}$	$\underset{\sim}{7}$	
$\stackrel{\square}{-}$	$\stackrel{\text { ¢ }}{\sim}$,	ఱ	¢
\|	1		\|	$141 /$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\stackrel{m}{\square}$	$\stackrel{\square}{\sim}$	$\stackrel{0}{9}$	ก	Wơすかon
$\stackrel{\sim}{\sim}$	-	ก		¢
-	\|	\|	\|	\| \<11

| 110 | 1 | |
| :--- |
| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

(

-179.37
-165.80
-155.67
-149.81
-140.35

Selected examples of ${ }^{1} \mathrm{H}$ NMR $+{ }^{13} \mathrm{C}$ of intermediate compounds from GP9 (S-alkylation)

$\stackrel{\tilde{\sim}}{\underset{\sim}{\sim}}$
$\underbrace{n}_{\infty} \underset{\infty}{\infty} \underbrace{\infty}_{\infty}$

Selected examples of ${ }^{\mathbf{1}} \mathrm{H}$ NMR + HPLC of final compounds in table 1

No.	Retention Time min	Area mAU**in	Relative Area \%
1	8.50	0.2	0.3
2	8.98	0.2	0.3
3	9.92	0.4	0.9
4	12.26	0.3	0.6
5	12.75	45.7	97.8
Total:		46.7	100.0

							$\xrightarrow{\text { d }}$					$\stackrel{\text { ஞ }}{\substack{0}}$	$\stackrel{\sim}{\infty}$													
. 3.0	12.5	12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0
													f1 (ppm)													

Seq: 2021-08-17- PHARE-1 \quad EXT367NM WVL:367 nm

$\left.$| No. | etention Tim |
| :--- | :---: | :---: | :---: |
| min | |\quad| Area |
| :---: |
$\mathrm{mAU*}$ min	\quad	Relative Area	
$\%$	\right\rvert\,	1	9.07
:---	:---:		
2	11.22		

Selected examples of ${ }^{\mathbf{1}} \mathbf{H}$ NMR + HPLC of final compounds in table 2

532EDL444-1
pH3 HCOOH 10mM / ACN
03202008ACID0681

Selected examples of ${ }^{\mathbf{1}} \mathbf{H}$ NMR + HPLC of final compounds in table 3

	Retention Time (min)	Area $\left(\mu \mathrm{V}^{\star} \mathrm{sec}\right)$	\% Area	Width @ 50%
1	5.06	5542427	51.6	0.23072
2	6.27	5190448	48.4	0.45139

	Retention Time (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Width @ 50%
1	5.04	8780939	99.9	0.22680
2	6.38	10720	0.1	0.40852

Selected examples of ${ }^{\mathbf{1}} \mathrm{H}$ NMR + HPLC of final compounds in table 4

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ Molecular Weight: 344,43

532EDL120-2
pH3 HCOOH $10 \mathrm{mM} / \mathrm{ACN}$
pH3 HCOOH 10mM
2
\vdots

Selected examples of ${ }^{\mathbf{1}} \mathrm{H}$ NMR + HPLC of final compounds in table 5

Selected examples of ${ }^{\mathbf{1}} \mathbf{H}$ NMR + HPLC of final compounds in table 6

532EDL $190-1$
pH3 HCOOH $10 \mathrm{mM} / \mathrm{ACN}$

22-Jan-2020

No. etention Tim min	Area $\mathrm{mAU} U^{*}$ min	kelative Area $\%$	
1	10.08	2.7	3.3
2	11.72	0.1	0.2
3	13.01	77.4	95.1
4	16.14	1.0	1.3
5	17.29	0.1	0.1
Total:			

Selected examples of ${ }^{\mathbf{1}} \mathbf{H}$ NMR + HPLC of final compounds in table 7

Selected examples of ${ }^{\mathbf{1}} \mathrm{H}$ NMR + HPLC/MS of final compounds in table 8

[^8]532EDL057-2
01-Oct-2019
pH3 HCOOH 10mM / ACN
XSelect C18 CSH1
03201909ACID0869

$\begin{array}{r}\text { 2: Diode Array } \\ 254 \\ \text { Range: } 5.865 \mathrm{e}-1 \\ \text { Area } \\ \hline\end{array}$
pH3 HCOOH 10m

| | | 2: Diode Array |
| ---: | ---: | ---: | ---: |
| | | 254 |
| Ranae: $5.865 \mathrm{e}-1$ | | |$|$

Selected examples of ${ }^{1} \mathrm{H}$ NMR + HPLC of final compounds in table 9

	Retention Time (min)	Area	\% Area	Height
1	8.494	23269	0.20	6918
2	8.610	24242	0.21	6695
3	10.664	13379	0.11	3247
4	11.813	11705417	99.27	2666494
5	12.097	5571	0.05	1638
6	12.217	11571	0.10	2917
7	12.448	8128	0.07	1937

```
OM
```


	Retention Time (min)	Area	\% Area	Height
1	7.415	663146	97.94	163278
2	10.070	6281	0.93	1609
3	11.828	7672	1.13	1750

Selected examples of ${ }^{\mathbf{1}} \mathrm{H}$ NMR + HPLC of final compounds in table 10

532EDL047-1 25-Sep-2019
pH3 HCOOH $10 \mathrm{mM} / \mathrm{ACN}$
03201909ACID0532
lect C18 CSH1

No.	etention Tim min	Area $\mathrm{mAU*} \mathrm{~min}$	Relative Area $\%$
1	8.40	0.4	2.0
2	9.77	19.2	98.0
Total:		19.6	100.0

Selected examples of ${ }^{\mathbf{1}} \mathrm{H}$ NMR + HPLC of final compounds in table 11

No.	etention Tim min	Area mAU min	Relative Area $\%$
1	6.89	0.8	0.6
2	7.61	0.7	0.5
3	7.79	129.4	98.8
4	8.03	0.1	0.1
Total:			

532EDL239-1 pH3 HCOOH 10mM / ACN 03202003ACID0123

9 Tables

Table S1. Assay parameters for the tested protein kinases in the Reaction Biology radiometric assays.

\#	Kinase	Kinase concentration $(\mathbf{n g} / \mathbf{5 0} \boldsymbol{\mu L})$	Kinase concentration $(\mathbf{n M})$	ATP concentratio $\mathbf{n}(\boldsymbol{\mu M})$	Substrate	Substrate concentration $(\boldsymbol{\mu g} / \mathbf{5 0} \boldsymbol{\mu L})$
1	CDK5/p25	15	3.3	0.3	RBERCHKtide	1.0
2	CK1ع	2	0.8	0.3	Casein	0.5
3	CLK1	200	46.1	0.3	$\mathrm{H}_{2} 0$ (autophosphorylation)	0
4	CLK2	1	0.3	0.3	GSK3(14-27)	1.0
5	CLK3	8	2.7	0.3	S6-Peptide	1.0
6	CLK4	30	7.1	0.1	Myelin Basic Protein	1.0
7	DYRK1A	5	0.9	1.0	RBERCHKtide	2.0
8	DYRK1B	5	1.0	0.3	RBERCHKtide	2.0
9	DYRK2	3	0.7	1.0	RBERIRStide	2.0
10	DYRK3	3	0.6	0.3	RBERIRStide	1.0
11	DYRK4	20	4.5	0.1	RBERCHKtide	1.0
12	GSK3ß	75	19.7	0.3	RBERCHKtide	1.0

Table S2. Evaluation of Leucettinib-92 (32) in the Eurofins DiscovRx KinomeScan kinase selectivity panel (468 kinases) (). Enzymes were prepared and assayed as described in Karaman et al. (2008). Enzymes were exposed to $1 \mu \mathrm{M}$ of Leucettinib-92 (32). A semiquantitative scoring of this primary screen was estimated. Scores >10, between 1 and 10 and <1 indicate the probability of a being a false positive is $<20 \%,<10 \%,<5 \%$, respectively. Scores ≤ 10 are underlined in pink.

\#	Kinase	Leucettinib 92
1	AAK1	45
2	ABL1(E255K)-phosphorylated	98
3	ABL1(F317I)-nonphosphorylated	100
4	ABL1(F317I)-phosphorylated	100
5	ABL1(F317L)-nonphosphorylated	100
6	ABL1(F317L)-phosphorylated	100
7	ABL1(H396P)-nonphosphorylated	85
8	ABL1(H396P)-phosphorylated	100
9	ABL1(M351T)-phosphorylated	100
10	ABL1(Q252H)-nonphosphorylated	80
11	ABL1(Q252H)-phosphorylated	95
12	ABL1(T315I)-nonphosphorylated	100
13	ABL1(T315I)-phosphorylated	100
14	ABL1(Y253F)-phosphorylated	100
15	ABL1-nonphosphorylated	92
16	ABL1-phosphorylated	100
17	ABL2	100
18	ACVR1	84
19	ACVR1B	65
20	ACVR2A	98
21	ACVR2B	87
22	ACVRL1	98
23	ADCK3	92
24	ADCK4	100
25	AKT1	80
26	AKT2	95
27	AKT3	2.7
28	ALK	96
29	ALK(C1156Y)	100
30	ALK(L1196M)	100
31	AMPK-alpha1	77
32	AMPK-alpha2	100
33	ANKK1	100
34	ARK5	95
35	ASK1	78
36	ASK2	100
37	AURKA	100
38	AURKB	100
39	AURKC	87
40	AXL	47
41	BIKE	73
42	BLK	71
43	BMPR1A	62
44	BMPR1B	81
45	BMPR2	77

\#	Kinase	Leucettinib 92
46	BMX	86
47	BRAF	81
48	BRAF(V600E)	74
49	BRK	100
50	BRSK1	100
51	BRSK2	86
52	BTK	100
53	BUB1	87
54	CAMK1	95
55	CAMK1B	100
56	CAMK1D	98
57	CAMK1G	96
58	CAMK2A	77
59	CAMK2B	81
60	CAMK2D	100
61	CAMK2G	94
62	CAMK4	100
63	CAMKK1	94
64	CAMKK2	70
65	CASK	91
66	CDC2L1	98
67	CDC2L2	91
68	CDC2L5	100
69	CDK11	51
70	CDK2	100
71	CDK3	80
72	CDK4	94
73	CDK4-cyclinD1	94
74	CDK4-cyclinD3	100
75	CDK5	99
76	CDK7	60
77	CDK8	40
78	CDK9	18
79	CDKL1	70
80	CDKL2	20
81	CDKL3	49
82	CDKL5	100
83	CHEK1	100
84	CHEK2	100
85	CIT	0
86	CLK1	0.75
87	CLK2	0
88	CLK3	9
89	CLK4	2.1
90	CSF1R	79
91	CSF1R-autoinhibited	100
92	CSK	99
93	CSNK1A1	24
94	CSNK1A1L	57
95	CSNK1D	20
96	CSNK1E	3.7
97	CSNK1G1	81

\#	Kinase	Leucettinib 92
98	CSNK1G2	54
99	CSNK1G3	53
100	CSNK2A1	1.3
101	CSNK2A2	0.6
102	CTK	94
103	DAPK1	88
104	DAPK2	71
105	DAPK3	72
106	DCAMKL1	100
107	DCAMKL2	92
108	DCAMKL3	99
109	DDR1	97
110	DDR2	100
111	DLK	100
112	DMPK	9.3
113	DMPK2	63
114	DRAK1	61
115	DRAK2	38
116	DYRK1A	0
117	DYRK1B	0
118	DYRK2	2.7
119	EGFR	77
120	EGFR(E746-A750del)	99
121	EGFR(G719C)	94
122	EGFR(G719S)	97
123	EGFR(L747-E749del, A750P)	62
124	EGFR(L747-S752del, P753S)	74
125	EGFR(L747-T751del,Sins)	77
126	EGFR(L858R)	76
127	EGFR(L858R,T790M)	100
128	EGFR(L861Q)	98
129	EGFR(S752-I759del)	88
130	EGFR(T790M)	96
131	EIF2AK1	100
132	EPHA1	81
133	EPHA2	85
134	EPHA3	96
135	EPHA4	100
136	EPHA5	95
137	EPHA6	90
138	EPHA7	100
139	EPHA8	100
140	EPHB1	98
141	EPHB2	94
142	EPHB3	99
143	EPHB4	86
144	EPHB6	73
145	ERBB2	100
146	ERBB3	100
147	ERBB4	92
148	ERK1	86
149	ERK2	100

\#	Kinase	Leucettinib 92
150	ERK3	95
151	ERK4	100
152	ERK5	100
153	ERK8	18
154	ERN1	100
155	FAK	100
156	FER	97
157	FES	91
158	FGFR1	94
159	FGFR2	87
160	FGFR3	88
161	FGFR3(G697C)	95
162	FGFR4	99
163	FGR	92
164	FLT1	100
165	FLT3	63
166	FLT3(D835H)	58
167	FLT3(D835V)	1.6
168	FLT3(D835Y)	12
169	FLT3(ITD)	48
170	FLT3(ITD,D835V)	6.3
171	FLT3(ITD,F691L)	28
172	FLT3(K663Q)	51
173	FLT3(N841I)	28
174	FLT3(R834Q)	82
175	FLT3-autoinhibited	100
176	FLT4	98
177	FRK	98
178	FYN	92
179	GAK	89
180	GCN2(Kin.Dom.2,S808G)	79
181	GRK1	99
182	GRK2	100
183	GRK3	100
184	GRK4	71
185	GRK7	100
186	GSK3A	12
187	GSK3B	33
188	HASPIN	0.45
189	HCK	80
190	HIPK1	1.2
191	HIPK2	0.65
192	HIPK3	2.6
193	HIPK4	12
194	HPK1	100
195	HUNK	100
196	ICK	100
197	IGF1R	90
198	IKK-alpha	87
199	IKK-beta	100
200	IKK-epsilon	100
201	INSR	100

\#	Kinase	Leucettinib 92
202	INSRR	100
203	IRAK1	2.4
204	IRAK3	74
205	IRAK4	67
206	ITK	99
207	JAK1(JH1domain-catalytic)	90
208	JAK1(JH2domain-pseudokinase)	98
209	JAK2(JH1domain-catalytic)	25
210	JAK3(JH1domain-catalytic)	4.1
211	JNK1	100
212	JNK2	100
213	JNK3	100
214	KIT	91
215	KIT(A829P)	95
216	KIT(D816H)	68
217	KIT(D816V)	61
218	KIT(L576P)	95
219	KIT(V559D)	97
220	KIT(V559D,T670I)	82
221	KIT(V559D,V654A)	83
222	KIT-autoinhibited	100
223	LATS1	49
224	LATS2	0
225	LCK	74
226	LIMK1	75
227	LIMK2	89
228	LKB1	82
229	LOK	91
230	LRRK2	46
231	LRRK2(G2019S)	83
232	LTK	100
233	LYN	84
234	LZK	91
235	MAK	77
236	MAP3K1	100
237	MAP3K15	100
238	MAP3K2	100
239	MAP3K3	100
240	MAP3K4	91
241	MAP4K2	27
242	MAP4K3	100
243	MAP4K4	16
244	MAP4K5	83
245	MAPKAPK2	100
246	MAPKAPK5	100
247	MARK1	100
248	MARK2	93
249	MARK3	100
250	MARK4	90
251	MAST1	96
252	MEK1	99
253	MEK2	100

\#	Kinase	Leucettinib 92
254	MEK3	60
255	MEK4	100
256	MEK5	95
257	MEK6	99
258	MELK	44
259	MERTK	99
260	MET	66
261	MET(M1250T)	89
262	MET(Y1235D)	95
263	MINK	9.3
264	MKK7	100
265	MKNK1	100
266	MKNK2	100
267	MLCK	100
268	MLK1	78
269	MLK2	100
270	MLK3	94
271	MRCKA	47
272	MRCKB	4.9
273	MST1	100
274	MST1R	93
275	MST2	100
276	MST3	92
277	MST4	100
278	MTOR	93
279	MUSK	100
280	MYLK	84
281	MYLK2	95
282	MYLK4	90
283	MYO3A	100
284	MYO3B	100
285	NDR1	25
286	NDR2	79
287	NEK1	100
288	NEK10	100
289	NEK11	100
290	NEK2	100
291	NEK3	93
292	NEK4	99
293	NEK5	85
294	NEK6	100
295	NEK7	100
296	NEK9	100
297	NIK	61
298	NIM1	100
299	NLK	99
300	OSR1	100
301	p38-alpha	93
302	p38-beta	100
303	p38-delta	93
304	p38-gamma	87
305	PAK1	50

\#	Kinase	Leucettinib 92
306	PAK2	30
307	PAK3	100
308	PAK4	86
309	PAK6	92
310	PAK7	97
311	PCTK1	100
312	PCTK2	89
313	PCTK3	100
314	PDGFRA	100
315	PDGFRB	91
316	PDPK1	67
317	PFCDPK1(P.falciparum)	100
318	PFPK5(P.falciparum)	100
319	PFTAIRE2	93
320	PFTK1	95
321	PHKG1	88
322	PHKG2	90
323	PIK3C2B	98
324	PIK3C2G	98
325	PIK3CA	100
326	PIK3CA(C420R)	100
327	PIK3CA(E542K)	97
328	PIK3CA(E545A)	100
329	PIK3CA(E545K)	100
330	PIK3CA(H1047L)	96
331	PIK3CA(H1047Y)	100
332	PIK3CA(I800L)	100
333	PIK3CA(M1043I)	100
334	PIK3CA(Q546K)	100
335	PIK3CB	89
336	PIK3CD	100
337	PIK3CG	91
338	PIK4CB	100
339	PIKFYVE	27
340	PIM1	26
341	PIM2	49
342	PIM3	25
343	PIP5K1A	94
344	PIP5K1C	100
345	PIP5K2B	92
346	PIP5K2C	90
347	PKAC-alpha	16
348	PKAC-beta	11
349	PKMYT1	100
350	PKN1	55
351	PKN2	100
352	PKNB(M.tuberculosis)	100
353	PLK1	100
354	PLK2	100
355	PLK3	100
356	PLK4	100
357	PRKCD	57

\#	Kinase	Leucettinib 92
358	PRKCE	14
359	PRKCH	65
360	PRKCI	100
361	PRKCQ	24
362	PRKD1	100
363	PRKD2	100
364	PRKD3	100
365	PRKG1	50
366	PRKG2	2.1
367	PRKR	97
368	PRKX	27
369	PRP4	100
370	PYK2	97
371	QSK	100
372	RAF1	100
373	RET	90
374	RET(M918T)	100
375	RET(V804L)	96
376	RET(V804M)	95
377	RIOK1	100
378	RIOK2	80
379	RIOK3	70
380	RIPK1	94
381	RIPK2	91
382	RIPK4	97
383	RIPK5	100
384	ROCK1	57
385	ROCK2	91
386	ROS1	84
387	RPS6KA4(Kin.Dom.1-N-terminal)	100
388	RPS6KA4(Kin.Dom.2-C-terminal)	100
389	RPS6KA5(Kin.Dom.1-N-terminal)	98
390	RPS6KA5(Kin.Dom.2-C-terminal)	73
391	RSK1(Kin.Dom.1-N-terminal)	70
392	RSK1(Kin.Dom.2-C-terminal)	84
393	RSK2(Kin.Dom.1-N-terminal)	100
394	RSK2(Kin.Dom.2-C-terminal)	100
395	RSK3(Kin.Dom.1-N-terminal)	96
396	RSK3(Kin.Dom.2-C-terminal)	93
397	RSK4(Kin.Dom.1-N-terminal)	100
398	RSK4(Kin.Dom.2-C-terminal)	91
399	S6K1	100
400	SBK1	100
401	SGK	100
402	SgK110	80
403	SGK2	100
404	SGK3	94
405	SIK	100
406	SIK2	100
407	SLK	100
408	SNARK	66
409	SNRK	100

\#	Kinase	Leucettinib 92
410	SRC	83
411	SRMS	100
412	SRPK1	100
413	SRPK2	100
414	SRPK3	100
415	STK16	39
416	STK33	100
417	STK35	98
418	STK36	85
419	STK39	97
420	SYK	100
421	TAK1	8.9
422	TAOK1	45
423	TAOK2	98
424	TAOK3	100
425	TBK1	98
426	TEC	100
427	TESK1	91
428	TGFBR1	95
429	TGFBR2	51
430	TIE1	99
431	TIE2	94
432	TLK1	95
433	TLK2	97
434	TNIK	20
435	TNK1	80
436	TNK2	86
437	TNNI3K	85
438	TRKA	100
439	TRKB	100
440	TRKC	100
441	TRPM6	98
442	TSSK1B	100
443	TSSK3	100
444	TTK	90
445	TXK	90
446	TYK2(JH1domain-catalytic)	56
447	TYK2(JH2domain-pseudokinase)	38
448	TYRO3	100
449	ULK1	100
450	ULK2	96
451	ULK3	100
452	VEGFR2	100
453	VPS34	99
454	VRK2	100
455	WEE1	100
456	WEE2	100
457	WNK1	100
458	WNK2	100
459	WNK3	100
460	WNK4	86
461	YANK1	100

$\#$	Kinase	Leucettinib 92
462	YANK2	100
463	YANK3	100
464	YES	94
465	YSK1	98
466	YSK4	8.9
467	ZAK	87
468	ZAP70	100

Table S3. Thermal shift selectivity screen of Leucettinib-92 (32) and iso-Leucettinib-92 (35) tested at $0.1 \mu \mathrm{M}$ with 95 human kinases. Thermal shifts superior to $8^{\circ} \mathrm{C}$ shift are underlined in pink.

\#	Kinase	Leucettinib 92	Iso-Leucettinib-92
1	AAK1	6.1	0.0
2	ABL1	2.4	-0.2
3	AKT3	-0.3	0.0
4	AURKB	-0.6	-0.9
5	BMP2K	9.8	-0.1
6	BMPR2	4.9	0.0
7	BMX	-1.2	-2.6
8	BRAF	2.5	-0.7
9	BRD4	-0.1	-1.1
10	BRPF1B	-0.4	-1.5
11	CAMK1D	0.1	0.1
12	CAMK2B	-0.4	-0.6
13	CAMK2D	1.1	-0.5
14	CAMK4	0.9	-0.1
15	CAMKK2	10.2	-0.5
16	CASK	-0.6	-0.4
17	CDKL1	1.4	-0.9
18	CHEK2	-0.4	-0.9
19	CLK1	19.9	2.0
20	CLK3	9.7	-0.5
21	CSNK1D	5.0	1.4
22	CSNK1E	5.5	-2.5
23	CSNK2A1	9.7	0.3
24	DAPK1	3.0	-0.2
25	DAPK3	3.0	-1.4
26	DCAMKL1	2.9	-0.3
27	DMPK1	5.6	0.1
28	DYRK1A	18.1	3.2
29	DYRK2	12.4	0.0
30	EPHA2	2.5	-0.4
31	EPHA4	1.8	1.0
32	EPHA5	-2.1	-0.8
33	EPHA7	0.3	-0.2
34	EPHB1	1.4	0.3
35	EPHB3	0.4	-4.4
36	FES	-0.5	-0.2
37	FGFR1	0.4	-0.7
38	FGFR2	0.9	0.2
39	FGFR3	-2.1	-0.1

40	FLT1	3.1	0.5
41	GAK	2.7	0.0
42	GPRK5	1.4	-0.3
43	GSG2	7.6	-0.1
44	GSK3B	6.5	0.9
45	HIPK2HSF	5.2	-0.4
46	MAP2K1	0.6	0.1
47	MAP2K4	0.5	-0.1
48	MAP2K6	-0.3	-0.1
49	MAP2K7	-0.1	0.4
50	MAP3K5	3.7	-0.2
51	MAPK1	0.3	-0.8
52	MAPK10	2.9	-0.7
53	MAPK13	0.8	-0.4
54	MAPK14	-0.2	0.1
55	MAPK15HSD	10.3	-0.2
56	MAPK8	2.5	0.1
57	MAPK9	0.9	0.1
58	MAPKAPK2	0.3	0.8
59	MARK3	0.6	0.2
60	MARK4	0.5	-0.6
61	MELK	4.2	-0.5
62	MERTK	0.8	0.2
63	MSSK1	0.2	0.1
64	MST4	-1.1	-0.5
65	NEK1	-3.6	-1.4
66	NEK2	-1.8	-0.5
67	NEK7	-0.9	-0.4
68	NQO2	-7.3	-0.8
69	OSR1	0.0	-0.9
70	PAK1	1.0	-0.7
71	PAK4	3.0	-0.2
72	PCTK1	1.3	-0.6
73	PHKG2	1.7	-0.6
74	PIM1	4.4	1.0
75	PIM3	5.5	1.0
76	PLK4	3.3	0.3
77	RPS6KA5	3.1	0.0
78	SLK	0.7	-0.5
79	SRC	1.5	-0.1
80	SRPK1	-0.6	-2.7
81	SRPK2	-0.6	0.0
82	STK10	-0.3	-0.6
83	STK17A	4.8	0.0
84	STK3	-0.5	-1.6
85	STK38L	3.5	-0.1
86	STK39	0.9	0.9
87	STK4	-0.4	-0.9
88	STK6	7.5	-0.4
89	TIF1	0.7	-1.2
90	TLK1	0.5	-0.3
91	TTK	1.2	1.0
92	ULK1	1.0	-1.5

93	ULK3	2.7	-0.8
94	VRK1	1.0	-0.4
95	WNK1	0.8	-0.3

Table S4. Conservation, within CLKs and DYRKs, of the DYRK1A amino acids involved in the binding of Leucettinib-92 (32). The DYRK1A amino acids interacting with Leucettinib-92 (32) (Fig. 2) are indicated in full. Corresponding amino acids in CLKs and other DYRKs are shown.

CLK1	CLK2	CLK3	CLK4	DYRK1A	DYRK1B	DYRK2	DYRK3	DYRK4
V	V	V	V	V173	V	V	A	A
K	K	K	K	K188	K	K	K	K
E	E	E	E	E239	E	E	E	E
L	L	L	L	L241	L	L	L	L
L	L	L	L	L294	L	L	L	V
V	V	A	V	V306	V	I	I	I
D	D	D	D	D307	D	D	D	D

Table S5. Data collection and refinement statistics for CLK1-Leucettinib-92 and CSNK2A1-Leucettinib-92 co-crystal structures.

Data collection	CLK1-Leucettinib-92	CSNK2A1-Leucettinib-92
Beamline	X06SA/PXI SLS	X06SA/PXI SLS
Wavelength (\AA)	0.99999	0.99999
Space group	C 121	$\mathrm{P} 4_{3} 2_{1} 2$
Cell dimensions		
$a, b, c(\AA)$	$92.13,64.03,70.57$	$127.30,127.30,124.47$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$90.0,118.5,90.0$	$90.0,90.0,90.0$
Resolution $(\AA)^{*}$	$47.30-2.60(2.72-2.60)$	$45.01-2.45(2.55-2.45)$
unique observations*		
Rpim *	$0.090(0.478)$	$0.034(0.596)$
Completeness $(\%)^{*}$	$95.6(98.2)$	$100.0(99.9)$
Multiplicity*	$2.4(2.5)$	$13.4(12.9)$
mean I/ $/ I^{*}$	$9.0(1.9)$	$15.1(1.7)$
CC1/2*	$0.989(0.594)$	$0.999(0.858)$
Refinement		
Rwork $/$ Rfree	$0.209 / 0.259$	$0.209 / 0.253$
No. of atoms	2540	5563
overall B-factors $\left(\AA^{2}\right)$	49.3	60.5
Rms deviations		
Bond lengths (\AA)	0.003	0.008
Bond angles $\left({ }^{\circ}\right)$	0.64	1.52
Ramachandran outlier $(\%)$	0.3	0.0
Protein Data Bank entry	8 P 04	8 P 05

${ }^{*}$ Values for the highest resolution shell are shown in parentheses

Figure S1. Co-crystal structure of Leucettinib-92 (32) with CSNK2A1. A. The observed electron density map $\left(2 \mathrm{~F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}}\right)$, of the ligand contoured at 1σ. B. Binding of Leucettinib-92 (32) to CSNK2A1 in cartoon/stick representation. Possible hydrogen bonds are indicated as black dashed lines. Water molecules are shown as red spheres. C. Overlay of the CSNK2A1 and CLK1 structures with Leucettinib-92 (32). The active sites of both kinases are highly similar and Leucettinib-92 (32) adopts a similar binding.

[^0]: Synthesis of
 (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(cyclohexylamino)-3,5-dihydro-4H-imidazol-4-one (2)

[^1]: Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(cycloheptylamino)-3,5-dihydro-4H-imidazol-4-one (17)

[^2]: Synthesis of (Z)-5-(benzo[d]thiazol-6-ylmethylene)-2-(cyclobutylamino)-3,5-dihydro-4H-imidazol-4-one (47)

[^3]: Synthesis of (Z)-5-(benzo[d] thiazol-6-ylmethylene)-2-((4-fluorophenyl)amino)-3,5-dihydro-4H-imidazol-4-one (185)

[^4]:

[^5]:

[^6]:

[^7]:

[^8]:

